scholarly journals Geographic distribution of economic potential of agricultural and forest biomass residual for energy use: Case study Croatia

Energy ◽  
2011 ◽  
Vol 36 (4) ◽  
pp. 2017-2028 ◽  
Author(s):  
Boris Ćosić ◽  
Zoran Stanić ◽  
Neven Duić
2020 ◽  
Vol 12 (14) ◽  
pp. 5667
Author(s):  
Tapio Ranta ◽  
Antti Karhunen ◽  
Mika Laihanen

With the increasing use of forest biomass, concerns about negative impacts have been raised in the debate. The aim of this study was to find out the attitude of university students towards the energy use of forest-based biomass and how different areas of sustainable forest operations were addressed. The survey was conducted over two years (2018–2019) with both full-time students at university and distance learning students who study alongside their work. Background information such as gender, nationality and field of study was collected from students. Most of the students currently considered the energy use of forest biomass to be sustainable. Many replies stressed that the situation could change if the use of forests is increased from the present circumstances. The main factors mentioned that led to forest-based bioenergy being sustainable were positive felling balance, compliance with forest certification, use of waste fractions and implementation of the Renewable Energy Directive (RED II) directive, while the loss of biodiversity, over-exploitation of forests, C debt and the cascading principle were factors that led to forest-based bioenergy being unsustainable. Student background variables had no effect on responses except for the field of study.


2009 ◽  
Vol E92-B (12) ◽  
pp. 3606-3615 ◽  
Author(s):  
Chen SUN ◽  
Yohannes D. ALEMSEGED ◽  
Ha Nguyen TRAN ◽  
Hiroshi HARADA

2012 ◽  
Vol 7 (1) ◽  
Author(s):  
Yanjin Liu ◽  
Giraldo Eugenio

Cultured bacteria addition is one of the technologies used for odor control and FOG (fat, oil, and grease) removal in wastewater collection systems. This study investigated the efficiency of bacterial addition on wastewater odor control by conducting a set of full scale trials in a 60,000 cubic meter per day system for a period of two years. The objectives of this study were: (i) to identify factors that could impact wastewater treatment plant (WWTP) operations due to the effect of bacterial addition in the collection system, (ii) to estimate/understand the level of those impacts, and (iii) to present some interesting findings from the completed case study. The plant operation data before and during the bacterial addition were reviewed. The application of the cultured bacteria presented in the study was found to have significant impacts on the operation of the WWTP in terms of influent biological oxygen demand (BOD) and total suspended solids (TSS) loading, primary settling, sludge production, energy use, dissolved sulfides concentration, and methane production.


Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 230
Author(s):  
Hossein Omrany ◽  
Veronica Soebarto ◽  
Jian Zuo ◽  
Ruidong Chang

This paper aims to propose a comprehensive framework for a clear description of system boundary conditions in life cycle energy assessment (LCEA) analysis in order to promote the incorporation of embodied energy impacts into building energy-efficiency regulations (BEERs). The proposed framework was developed based on an extensive review of 66 studies representing 243 case studies in over 15 countries. The framework consists of six distinctive dimensions, i.e., temporal, physical, methodological, hypothetical, spatial, and functional. These dimensions encapsulate 15 components collectively. The proposed framework possesses two key characteristics; first, its application facilitates defining the conditions of a system boundary within a transparent context. This consequently leads to increasing reliability of obtained LCEA results for decision-making purposes since any particular conditions (e.g., truncation or assumption) considered in establishing the boundaries of a system under study can be revealed. Second, the use of a framework can also provide a meaningful basis for cross comparing cases within a global context. This characteristic can further result in identifying best practices for the design of buildings with low life cycle energy use performance. Furthermore, this paper applies the proposed framework to analyse the LCEA performance of a case study in Adelaide, Australia. Thereafter, the framework is utilised to cross compare the achieved LCEA results with a case study retrieved from literature in order to demonstrate the framework’s capacity for cross comparison. The results indicate the capability of the framework for maintaining transparency in establishing a system boundary in an LCEA analysis, as well as a standardised basis for cross comparing cases. This study also offers recommendations for policy makers in the building sector to incorporate embodied energy into BEERs.


Sign in / Sign up

Export Citation Format

Share Document