Classical and minimum entropy generation analyses for steady state conduction with temperature dependent thermal conductivity and asymmetric thermal boundary conditions: Regular and functionally graded materials

Energy ◽  
2011 ◽  
Vol 36 (10) ◽  
pp. 6195-6207 ◽  
Author(s):  
A. Aziz ◽  
W.A. Khan
2006 ◽  
Vol 74 (5) ◽  
pp. 861-874 ◽  
Author(s):  
Florin Bobaru

We present a numerical approach for material optimization of metal-ceramic functionally graded materials (FGMs) with temperature-dependent material properties. We solve the non-linear heterogeneous thermoelasticity equations in 2D under plane strain conditions and consider examples in which the material composition varies along the radial direction of a hollow cylinder under thermomechanical loading. A space of shape-preserving splines is used to search for the optimal volume fraction function which minimizes stresses or minimizes mass under stress constraints. The control points (design variables) that define the volume fraction spline function are independent of the grid used in the numerical solution of the thermoelastic problem. We introduce new temperature-dependent objective functions and constraints. The rule of mixture and the modified Mori-Tanaka with the fuzzy inference scheme are used to compute effective properties for the material mixtures. The different micromechanics models lead to optimal solutions that are similar qualitatively. To compute the temperature-dependent critical stresses for the mixture, we use, for lack of experimental data, the rule-of-mixture. When a scalar stress measure is minimized, we obtain optimal volume fraction functions that feature multiple graded regions alternating with non-graded layers, or even non-monotonic profiles. The dominant factor for the existence of such local minimizers is the non-linear dependence of the critical stresses of the ceramic component on temperature. These results show that, in certain cases, using power-law type functions to represent the material gradation in FGMs is too restrictive.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
R. M. S. Gama ◽  
R. Pazetto

This work presents an useful tool for constructing the solution of steady-state heat transfer problems, with temperature-dependent thermal conductivity, by means of the solution of Poisson equations. Specifically, it will be presented a procedure for constructing the solution of a nonlinear second-order partial differential equation, subjected to Robin boundary conditions, by means of a sequence whose elements are obtained from the solution of very simple linear partial differential equations, also subjected to Robin boundary conditions. In addition, an a priori upper bound estimate for the solution is presented too. Some examples, involving temperature-dependent thermal conductivity, are presented, illustrating the use of numerical approximations.


Sign in / Sign up

Export Citation Format

Share Document