An assessment of wind energy potential at the demonstration offshore wind farm in Korea

Energy ◽  
2012 ◽  
Vol 46 (1) ◽  
pp. 555-563 ◽  
Author(s):  
Ki-Yong Oh ◽  
Ji-Young Kim ◽  
Jae-Kyung Lee ◽  
Moo-Sung Ryu ◽  
Jun-Shin Lee
Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2421
Author(s):  
Francisco Haces-Fernandez

Damages caused by wildfires in California due to transmission line failures have increased significantly in recent years. Curtailment of electric service in areas under fire threat has been implemented to avoid these wildfires. Results from this research indicated that 24% of California’s cities are at risk of wildfire, while 52% are at risk of blackout. These blackouts have resulted in significant financial losses and risk to life and health. Undergrounding current transmission lines has been proposed as a long-term solution. However, undergrounding lines would take decades to complete and increase average monthly electric bills from $80 to $260. This research investigated shortening the length of the electricity supply chain, supplying affected communities with onshore and offshore wind energy. Results showed good wind energy potential in locations near affected cities. Distance analyses revealed that more than two hundred cities (population 5.5 million) can be served by existing wind farms located at less than 50 km. Future offshore wind turbines could generate high power output (capacity factor >50% for significant periods). An analysis of diverse locations along California’s coast indicated that just one offshore wind farm could serve more than a hundred cities with cumulative population larger than one million.


2021 ◽  
Vol 9 (5) ◽  
pp. 531
Author(s):  
Florin Onea ◽  
Eugen Rusu ◽  
Liliana Rusu

The European offshore wind market is continuously expanding. This means that, together with significant technological developments, new coastal environments should be considered for the implementation of the wind farms, as is the case of the Black Sea, which is targeted in the present work. From this perspective, an overview of the wind energy potential in the Romanian exclusive economic zone (EEZ) in the Black Sea is presented in this work. This is made by analyzing a total of 20 years of wind data (corresponding to the time interval 2000–2019) coming from different sources, which include ERA5 reanalysis data and satellite measurements. Furthermore, a direct comparison between these datasets was also carried out. Finally, the results of the present work indicate that the Romanian offshore areas can replicate the success reported by the onshore wind projects, of which we can mention the Fantanele-Cogealac wind farm with an operating capacity of 600 MW.


Vestnik MEI ◽  
2020 ◽  
Vol 5 (5) ◽  
pp. 35-46
Author(s):  
Galina V. Deryugina ◽  
◽  
Evgeniy V. Ignatiev ◽  
Myat Tun Htet ◽  
Mikhail G. Tyagunov ◽  
...  

Nowadays, one of pressing problems in Myanmar is shortage of electric energy, which makes approximately 10% of all electric energy consumed in the country. This shortage can be partially decreased by constructing large-capacity grid-connected wind farms. The last four years have seen a general decline in the growth rates of commissioned wind farm capacities around the world; nonetheless, certain wind energy industry sectors, primarily offshore wind energy, demonstrate a steady growth. In recent years, the market of Asian countries, in particular, that of China, is one of the most rapidly growing offshore wind energy markets. An updated theoretical wind energy potential of Myanmar is given. It is shown that the highest wind intensity is observed on the western and southern coasts of Myanmar, which make approximately 8% of the country’s total area. The theoretical wind energy potential of the Andaman Sea water area near the west coast of Myanmar at heights equal to 10 and 100 m has been evaluated for the first time; eight promising sites for constructing offshore wind farms have been determined, and a model for analyzing efficient wind farms has been selected. A procedure has been developed, using which the optimal composition of a complex of several wind farms with the total capacity equal to 47.6 MW has been found. These wind farms are located at significant distances from each other in Andaman Sea areas, which are characterized by an essentially non-uniform distribution in time of wind intensities in them. Owing to this feature, it is possible to increase the energy generation by 8% and achieve a higher wind farm capacity utilization factor.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4435
Author(s):  
Travis C. Douville ◽  
Dhruv Bhatnagar

The significant offshore wind energy potential of Oregon faces several challenges, including a power grid which was not developed for the purpose of transmitting energy from the ocean. The grid impacts of the energy resource are considered through the lenses of (i) resource complementarity with Variable Renewable Energy resources; (ii) correlations with load profiles from the four balancing authorities with territory in Oregon; and (iii) spatial value to regional and coastal grids as represented through a production cost model of the Western Interconnection. The capacity implications of the interactions between offshore wind and the historical east-to-west power flows of the region are discussed. The existing system is shown to accommodate more than two gigawatts of offshore wind interconnections with minimal curtailment. Through three gigawatts of interconnection, transmission flows indicate a reduction of coastal and statewide energy imports as well as minimal statewide energy exports.


2021 ◽  
pp. 0309524X2110438
Author(s):  
Carlos Méndez ◽  
Yusuf Bicer

The present study analyzes the wind energy potential of Qatar, by generating a wind atlas and a Wind Power Density map for the entire country based on ERA-5 data with over 41 years of measurements. Moreover, the wind speeds’ frequency and direction are analyzed using wind recurrence, Weibull, and wind rose plots. Furthermore, the best location to install a wind farm is selected. The results indicate that, at 100 m height, the mean wind speed fluctuates between 5.6054 and 6.5257 m/s. Similarly, the Wind Power Density results reflect values between 149.46 and 335.06 W/m2. Furthermore, a wind farm located in the selected location can generate about 59.7437, 90.4414, and 113.5075 GWh/y electricity by employing Gamesa G97/2000, GE Energy 2.75-120, and Senvion 3.4M140 wind turbines, respectively. Also, these wind farms can save approximately 22,110.80, 17,617.63, and 11,637.84 tons of CO2 emissions annually.


2020 ◽  
pp. 0309524X2092540
Author(s):  
Addisu Dagne Zegeye

Although Ethiopia does not have significant fossil fuel resource, it is endowed with a huge amount of renewable energy resources such as hydro, wind, geothermal, and solar power. However, only a small portion of these resources has been utilized so far and less than 30% of the nation’s population has access to electricity. The wind energy potential of the country is estimated to be up to 10 GW. Yet less than 5% of this potential is developed so far. One of the reasons for this low utilization of wind energy in Ethiopia is the absence of a reliable and accurate wind atlas and resource maps. Development of reliable and accurate wind atlas and resource maps helps to identify candidate sites for wind energy applications and facilitates the planning and implementation of wind energy projects. The main purpose of this research is to assess the wind energy potential and model wind farm in the Mossobo-Harena site of North Ethiopia. In this research, wind data collected for 2 years from Mossobo-Harena site meteorological station were analyzed using different statistical software to evaluate the wind energy potential of the area. Average wind speed and power density, distribution of the wind, prevailing direction, turbulence intensity, and wind shear profile of the site were determined. Wind Atlas Analysis and Application Program was used to generate the generalized wind climate of the area and develop resource maps. Wind farm layout and preliminary turbine micro-sitting were done by taking various factors into consideration. The IEC wind turbine class of the site was determined and an appropriate wind turbine for the study area wind climate was selected and the net annual energy production and capacity factor of the wind farm were determined. The measured data analysis conducted indicates that the mean wind speed at 10 and 40 m above the ground level is 5.12 and 6.41 m/s, respectively, at measuring site. The measuring site’s mean power density was determined to be 138.55 and 276.52 W/m2 at 10 and 40 m above the ground level, respectively. The prevailing wind direction in the site is from east to south east where about 60% of the wind was recorded. The resource grid maps developed by Wind Atlas Analysis and Application Program on a 10 km × 10 km area at 50 m above the ground level indicate that the selected study area has a mean wind speed of 5.58 m/s and a mean power density of 146 W/m2. The average turbulence intensity of the site was found to be 0.136 at 40 m which indicates that the site has a moderate turbulence level. According to the resource assessment done, the area is classified as a wind Class IIIB site. A 2-MW rated power ENERCON E-82 E2 wind turbine which is an IEC Class IIB turbine with 82 m rotor diameter and 98 m hub height was selected for estimation of annual energy production on the proposed wind farm. 88 ENERCON E-82 E2 wind turbines were properly sited in the wind farm with recommended spacing between the turbines so as to reduce the wake loss. The rated power of the wind farm is 180.4 MW and the net annual energy production and capacity factor of the proposed wind farm were determined to be 434.315 GWh and 27.48% after considering various losses in the wind farm.


2017 ◽  
Vol 208 ◽  
pp. 1232-1245 ◽  
Author(s):  
Alain Ulazia ◽  
Jon Sáenz ◽  
Gabriel Ibarra-Berastegui ◽  
Santos J. González-Rojí ◽  
Sheila Carreno-Madinabeitia

2020 ◽  
Vol 196 ◽  
pp. 106745 ◽  
Author(s):  
Surisetty V.V. Arun Kumar ◽  
Garlapati Nagababu ◽  
Rashmi Sharma ◽  
Raj Kumar

Sign in / Sign up

Export Citation Format

Share Document