Sustainable passenger road transport scenarios to reduce fuel consumption, air pollutants and GHG (greenhouse gas) emissions in the Mexico City Metropolitan Area

Energy ◽  
2014 ◽  
Vol 66 ◽  
pp. 624-634 ◽  
Author(s):  
Carlos Chavez-Baeza ◽  
Claudia Sheinbaum-Pardo
2021 ◽  
Author(s):  
Noémie Taquet ◽  
Wolfgang Stremme ◽  
Eugenia González del Castillo ◽  
Alejandro Bezanilla ◽  
Michel Grutter ◽  
...  

<p>About seventy-five percent of the global carbon dioxide emissions from fossil fuel come from cities. Reducing anthropogenic greenhouse gas emissions, in particular in developing countries, is a major concern for local, national and international policies. Different mitigation strategies are and will be implemented to reduce greenhouse gas emissions, and the evaluation of their success and their perennization depends on the ability to continuously measure and quantify the effects at different spatial and temporal scales.</p><p>Using continuous solar absorption Fourier transform Spectroscopy (FTIR) column measurements in both urban and background environments over the Mexico City metropolitan area, together with in situ datasets, we explore the spatial and temporal variability of the CO2 concentration over the 5 last years in the region. Measurements were performed from three permanent stations equipped with high and low spectral resolution FTIR spectrometers since 2012, 2016 and 2018, respectively, the first is part of the NDACC network while the other two contribute to the COCCON international initiative.</p><p>In the frame of the Mexico City’s Regional Carbon Impacts (MERCI-CO2) project, 4 complementary sites equipped with EM27/Sun instruments were temporarily implemented within the megacity since autumn 2020. In particular, our time series encompass the COVID shutdown in MCMA. In this contribution we present results of the long term measurements in background and urban environment, intercomparison measurements, and preliminary results of the temporary MERCI-CO2 stations. In addition we report about the obstacles and opportunities of this intensive measurement campaign.</p>


2017 ◽  
Vol 36 (2) ◽  
pp. 131-139 ◽  
Author(s):  
Nafiz E Korkut ◽  
Cevat Yaman ◽  
Yusuf Küçükağa ◽  
Megan K Jaunich ◽  
İbrahim Demir

This article estimates greenhouse gas emissions and global warming factors resulting from collection of municipal solid waste to the transfer stations or landfills in Istanbul for the year of 2015. The aim of this study is to quantify and compare diesel fuel consumption and estimate the greenhouse gas emissions and global warming factors associated with municipal solid waste collection of the 39 districts of Istanbul. Each district’s greenhouse gas emissions resulting from the provision and combustion of diesel fuel was estimated by considering the number of collection trips and distances to municipal solid waste facilities. The estimated greenhouse gases and global warming factors for the districts varied from 61.2 to 2759.1 t CO2-eq and from 4.60 to 15.20 kg CO2-eq t-1, respectively. The total greenhouse gas emission was estimated as 46.4E3 t CO2-eq. Lastly, the collection data from the districts was used to parameterise a collection model that can be used to estimate fuel consumption associated with municipal solid waste collection. This mechanistic model can then be used to predict future fuel consumption and greenhouse gas emissions associated with municipal solid waste collection based on projected population, waste generation, and distance to transfer stations and landfills. The greenhouse gas emissions can be reduced by decreasing the trip numbers and trip distances, building more transfer stations around the city, and making sure that the collection trucks are full in each trip.


2017 ◽  
Vol 25 ◽  
pp. 3538-3551 ◽  
Author(s):  
Shashank Bharadwaj ◽  
Sudheer Ballare ◽  
Rohit ◽  
Munish K. Chandel

Sign in / Sign up

Export Citation Format

Share Document