Design and optimization of cascade organic Rankine cycle for recovering cryogenic energy from liquefied natural gas using binary working fluid

Energy ◽  
2015 ◽  
Vol 88 ◽  
pp. 304-313 ◽  
Author(s):  
Kyeongsu Kim ◽  
Ung Lee ◽  
Changsoo Kim ◽  
Chonghun Han
Author(s):  
M. A. Ancona ◽  
M. Bianchi ◽  
L. Branchini ◽  
A. De Pascale ◽  
F. Melino ◽  
...  

In the last years, the increased demand of the energy market has led to the increasing penetration of renewable energies in order to achieve the primary energy supply. However, natural gas is expected to still play a key role in the energy market, since its environmental impact is lower than other fossil fuels. It is mainly employed as gaseous fuel for stationary energy generation, but also as liquefied fuel, as an alternative to the diesel fuel, in vehicular applications. Liquefied Natural Gas is currently produced mainly in large plants directly located at the extraction sites and transported by ships or tracks to the final users. In order to avoid costs and environmental related impact, in previous studies Authors developed a new plant configuration for liquefied natural gas production directly at filling stations. One of the main issues of the process is that in various sections the working fluid needs to be cooled by external fluids (such as air for compressor inter and after-cooling or chilling fluids), in order to increase the global performances. As a consequence, an important amount of heat could be potentially recovered from this Liquefied Natural Gas production process. Thus, based on the obtained results, in this study the integration between the liquefaction process and an organic Rankine cycle is proposed. In fact, the heat recovered from the Liquefied Natural Gas production process can be used as hot source within the organic Rankine cycle. The aim of the work is the identification of the optimal integrated configuration, in order to maximize the heat recovery and, as a consequence, to optimize the process efficiency. With this purpose, in this study different configurations — in terms of considered organic fluid, architecture and origin of the recovered heat — have been defined and analyzed by means of a commercial software. This software is able to thermodynamically evaluate the proposed process and had allowed to define the optimal solution.


Author(s):  
Murat Erbas ◽  
Mehmet Alper Sofuoglu ◽  
Atilla Biyikoglu ◽  
Ibrahim Uslan

In this study, low temperature Organic Rankine Cycle (ORC) systems with single and two-stage turbine are proposed for the production of electricity. The refrigerant R-134a is selected as working fluid based on peak temperature of the cycle for solar and geothermal applications. The design criteria of ORC system is introduced and explained in detail. The radial inflow turbine is selected to satisfy the design requirements. The cycle performance is taken as a key point in the design criteria. The system performance map is constructed based on both velocity triangles and approximate efficiency of turbine. The procedures for turbine and cycle design are introduced in detail. The components of cycle and turbine are modeled using baseline correlations via real gas tables and macros created on Excel for the refrigerant, R134a. Finally, the turbine geometry is optimized to attain maximum turbine efficiency via MATLAB optimization toolbox.


Author(s):  
H. Xi ◽  
M. J. Li ◽  
Y. L. He ◽  
W. W. Yang ◽  
Y. S. Li

In the design and optimization of the ORC system, the selection of working fluid is one of the most important factors that should be considered. In this work, considering different heat sources with their temperatures ranging from 80 to 120 °C, 8 different zeotropic mixtures were proposed and their thermodynamic and economic performance for two types of traditional ORC systems (i.e. basic organic Rankine cycle, BORC and organic Rankine cycle with internal heat exchanger, IHORC) were investigated. Firstly, economic analysis were performed for both systems; Secondly, genetic algorithm (GA) was then introduced to determine the optimal fractions and other operation parameters for zeotropic mixtures under different working conditions and systems, the algorithm implementation process was described. Thirdly, the optimization studies were performed by using annual cash flow as the objective function. The optimal thermodynamic performance of different zeotropic mixtures and their components were both calculated and compared. For the different heat sources temperatures, the optimal zeotropic mixtures and their optimal fraction were recommended according to the calculated results.


Sign in / Sign up

Export Citation Format

Share Document