Heat Recovery From a Liquefied Natural Gas Production Process by Means of an Organic Rankine Cycle

Author(s):  
M. A. Ancona ◽  
M. Bianchi ◽  
L. Branchini ◽  
A. De Pascale ◽  
F. Melino ◽  
...  

In the last years, the increased demand of the energy market has led to the increasing penetration of renewable energies in order to achieve the primary energy supply. However, natural gas is expected to still play a key role in the energy market, since its environmental impact is lower than other fossil fuels. It is mainly employed as gaseous fuel for stationary energy generation, but also as liquefied fuel, as an alternative to the diesel fuel, in vehicular applications. Liquefied Natural Gas is currently produced mainly in large plants directly located at the extraction sites and transported by ships or tracks to the final users. In order to avoid costs and environmental related impact, in previous studies Authors developed a new plant configuration for liquefied natural gas production directly at filling stations. One of the main issues of the process is that in various sections the working fluid needs to be cooled by external fluids (such as air for compressor inter and after-cooling or chilling fluids), in order to increase the global performances. As a consequence, an important amount of heat could be potentially recovered from this Liquefied Natural Gas production process. Thus, based on the obtained results, in this study the integration between the liquefaction process and an organic Rankine cycle is proposed. In fact, the heat recovered from the Liquefied Natural Gas production process can be used as hot source within the organic Rankine cycle. The aim of the work is the identification of the optimal integrated configuration, in order to maximize the heat recovery and, as a consequence, to optimize the process efficiency. With this purpose, in this study different configurations — in terms of considered organic fluid, architecture and origin of the recovered heat — have been defined and analyzed by means of a commercial software. This software is able to thermodynamically evaluate the proposed process and had allowed to define the optimal solution.

2017 ◽  
Vol 105 ◽  
pp. 4859-4865 ◽  
Author(s):  
M.A. Ancona ◽  
M. Bianchi ◽  
L. Branchini ◽  
A. De Pascale ◽  
F. Melino

Author(s):  
M. A. Ancona ◽  
M. Bianchi ◽  
L. Branchini ◽  
A. De Pascale ◽  
F. Melino ◽  
...  

In the last years, the increased demand of the energy market has led to the increasing penetration of renewable energies in order to achieve the primary energy supply. However, simultaneously natural gas still plays a key role in the energy market, mainly as gaseous fuel for stationary energy generation, but also as liquefied fuel, as an alternative to the diesel fuel, in vehicular applications. Liquefied Natural Gas (LNG) is currently produced in large plants directly located at the extraction sites. In this study, the idea of realizing plug & play solutions to produce LNG directly at vehicle’s filling stations has been investigated. A novel process of LNG production for filling stations has been analyzed, consisting in a single stage Joule-Thompson isenthalpic expansion process, with intercooled compression. Furthermore, the presented layout has been developed with the purpose of optimizing the energy consumption of the plant, obtaining moderately pressurized LNG. With the aim of investigating the feasibility of this novel LNG generation process, a thermodynamic analysis has been carried out and presented in this study. Moreover, the minimization of energy consumption has been investigated with a parametric analysis, in order to optimize the LNG production and to maximize the efficiency of the process. Furthermore, novel performance indicators have been defined, in order to account the efficiency of the LNG production process. Results of the optimization analysis show that, with the proposed layout, an energy consumption equal to about 1.9 MJ/kg of produced LNG can be achieved.


2021 ◽  
Vol 11 (5) ◽  
pp. 1984
Author(s):  
Ramin Moradi ◽  
Emanuele Habib ◽  
Enrico Bocci ◽  
Luca Cioccolanti

Organic Rankine cycle (ORC) systems are some of the most suitable technologies to produce electricity from low-temperature waste heat. In this study, a non-regenerative, micro-scale ORC system was tested in off-design conditions using R134a as the working fluid. The experimental data were then used to tune the semi-empirical models of the main components of the system. Eventually, the models were used in a component-oriented system solver to map the system electric performance at varying operating conditions. The analysis highlighted the non-negligible impact of the plunger pump on the system performance Indeed, the experimental results showed that the low pump efficiency in the investigated operating range can lead to negative net electric power in some working conditions. For most data points, the expander and the pump isentropic efficiencies are found in the approximate ranges of 35% to 55% and 17% to 34%, respectively. Furthermore, the maximum net electric power was about 200 W with a net electric efficiency of about 1.2%, thus also stressing the importance of a proper selection of the pump for waste heat recovery applications.


Author(s):  
Fredrik Ahlgren ◽  
Maria E. Mondejar ◽  
Magnus Genrup ◽  
Marcus Thern

Maritime transportation is a significant contributor to SOx, NOx and particle matter emissions, even though it has a quite low CO2 impact. New regulations are being enforced in special areas that limit the amount of emissions from the ships. This fact, together with the high fuel prices, is driving the marine industry towards the improvement of the energy efficiency of current ship engines and the reduction of their energy demand. Although more sophisticated and complex engine designs can improve significantly the efficiency of the energy systems in ships, waste heat recovery arises as the most influent technique for the reduction of the energy consumption. In this sense, it is estimated that around 50% of the total energy from the fuel consumed in a ship is wasted and rejected in fluid and exhaust gas streams. The primary heat sources for waste heat recovery are the engine exhaust and the engine coolant. In this work, we present a study on the integration of an organic Rankine cycle (ORC) in an existing ship, for the recovery of the main and auxiliary engines exhaust heat. Experimental data from the operating conditions of the engines on the M/S Birka Stockholm cruise ship were logged during a port-to-port cruise from Stockholm to Mariehamn over a period of time close to one month. The ship has four main engines Wärtsilä 5850 kW for propulsion, and four auxiliary engines 2760 kW used for electrical consumers. A number of six load conditions were identified depending on the vessel speed. The speed range from 12–14 knots was considered as the design condition, as it was present during more than 34% of the time. In this study, the average values of the engines exhaust temperatures and mass flow rates, for each load case, were used as inputs for a model of an ORC. The main parameters of the ORC, including working fluid and turbine configuration, were optimized based on the criteria of maximum net power output and compactness of the installation components. Results from the study showed that an ORC with internal regeneration using benzene would yield the greatest average net power output over the operating time. For this situation, the power production of the ORC would represent about 22% of the total electricity consumption on board. These data confirmed the ORC as a feasible and promising technology for the reduction of fuel consumption and CO2 emissions of existing ships.


Sign in / Sign up

Export Citation Format

Share Document