Evaluation of specific lipid production and nutrients removal from wastewater by Rhodosporidium toruloides and biodiesel production from wet biomass via microwave irradiation

Energy ◽  
2016 ◽  
Vol 108 ◽  
pp. 185-194 ◽  
Author(s):  
Jiayin Ling ◽  
Saiwa Nip ◽  
Renata Alves de Toledo ◽  
Yuan Tian ◽  
Hojae Shim
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Rasool Kamal ◽  
Yuxue Liu ◽  
Qiang Li ◽  
Qitian Huang ◽  
Qian Wang ◽  
...  

Abstract Background Crude glycerol as a promising feedstock for microbial lipid production contains several impurities that make it toxic stress inducer at high amount. Under stress conditions, microorganisms can accumulate l-proline as a safeguard. Herein, l-proline was assessed as an anti-stress agent in crude glycerol media. Results Crude glycerol was converted to microbial lipids by the oleaginous yeast Rhodosporidium toruloides CGMCC 2.1389 in a two-staged culture mode. The media was supplied with exogenous l-proline to improve lipid production efficiency in high crude glycerol stress. An optimal amount of 0.5 g/L l-proline increased lipid titer and lipid yield by 34% and 28%, respectively. The lipid titer of 12.2 g/L and lipid content of 64.5% with a highest lipid yield of 0.26 g/g were achieved with l-proline addition, which were far higher than those of the control, i.e., lipid titer of 9.1 g/L, lipid content of 58% and lipid yield of 0.21 g/g. Similarly, l-proline also improved cell growth and glycerol consumption. Moreover, fatty acid compositional profiles of the lipid products was found suitable as a potential feedstock for biodiesel production. Conclusion Our study suggested that exogenous l-proline improved cell growth and lipid production on crude glycerol by R. toruloides. The fact that higher lipid yield as well as glycerol consumption indicated that l-proline might act as a potential anti-stress agent for the oleaginous yeast strain.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1053 ◽  
Author(s):  
Xiaozan Dai ◽  
Hongwei Shen ◽  
Qiang Li ◽  
Kamal Rasool ◽  
Qian Wang ◽  
...  

Dry acid pretreatment and biodetoxification (DryPB) has been considered as an advanced technology to treat lignocellulosic materials for improved downstream bioconversion. In this study, the lipid production from DryPB corn stover was investigated by the oleaginous yeast Rhodosporidium toruloides using a new process designated prehydrolysis followed by simultaneous saccharification and lipid production (PreSSLP). The results found that prehydrolysis at 50 °C and then lipid production at 30 °C improved lipid yield by more than 17.0% compared with those without a prehydrolysis step. The highest lipid yield of 0.080 g/g DryPB corn stover was achieved at a solid loading of 12.5%. The fatty acid distribution of lipid products was similar to those of conventional vegetable oils that are used for biodiesel production. Our results suggested that the integration of DryPB process and PreSSLP process can be explored as an improved technology for microbial lipid production from lignocellulosic materials.


2017 ◽  
Vol 223 ◽  
pp. 259-268 ◽  
Author(s):  
Carlos Ricardo Soccol ◽  
Carlos José Dalmas Neto ◽  
Vanete Thomaz Soccol ◽  
Eduardo Bittencourt Sydney ◽  
Eduardo Scopel Ferreira da Costa ◽  
...  

2014 ◽  
Vol 28 (3) ◽  
pp. 341-348 ◽  
Author(s):  
Agata Piasecka ◽  
Izabela Krzemińska ◽  
Jerzy Tys

Abstract The prospect of depletion of natural energy resources on the Earth forces researchers to seek and explore new and alternative energy sources. Biomass is a composite resource that can be used in many ways leading to diversity of products. Therefore, microalgal biomass offers great potential. The main aim of this study is to find the best physical method of microalgal biomass pretreatment that guarantees efficient lipid extraction. These studies identifies biochemical composition of microalgal biomass as source for biodisel production. The influence of drying at different temperatures and lyophilization was investigated. In addition, wet and untreated biomass was examined. Cell disruption (sonication and microwave) techniques were used to improve lipid extraction from wet biomass. Additionally, two different extraction methods were carried out to select the best method of crude oil extraction. The results of this study show that wet biomass after sonication is the most suitable for extraction. The fatty acid composition of microalgal biomass includes linoleic acid (C18:2), palmitic acid (C16:0), oleic acid (C18:1), linolenic acid (C18:3), and stearic acid (C18:0), which play a key role in biodiesel production.


2018 ◽  
Vol 11 (5) ◽  
pp. 2075-2086 ◽  
Author(s):  
Paula C. Passarinho ◽  
Bruno Oliveira ◽  
Carla Dias ◽  
Marta Teles ◽  
Alberto Reis ◽  
...  

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Feng Qi ◽  
Peijie Shen ◽  
Rongfei Hu ◽  
Ting Xue ◽  
Xianzhang Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document