Energy, exergy and economic analysis of a hybrid renewable energy with hydrogen storage system

Energy ◽  
2018 ◽  
Vol 148 ◽  
pp. 1087-1102 ◽  
Author(s):  
A. Khosravi ◽  
R.N.N. Koury ◽  
L. Machado ◽  
J.J.G. Pabon
2005 ◽  
Vol 895 ◽  
Author(s):  
Anne C. Dillon ◽  
Brent P. Nelson ◽  
Yufeng Zhao ◽  
Yong-Hyun Kim ◽  
C. Edwin Tracy ◽  
...  

AbstractThe majority of the world energy consumption is derived from fossil fuels. Furthermore, the United States (US) consumption of petroleum vastly exceeds its production, with the majority of petroleum being consumed in the transportation sector. The increasing dependency on foreign fuel resources in conjunction with the severe environmental impacts of a petroleum-based society dictates that alternative renewable energy resources be developed. The US Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy and the Office of Basic Energy Sciences are currently promoting a vehicular hydrogen-based energy economy. However, none of the current on-board storage technologies are suitable for practical and safe deployment. Significant scientific advancement is therefore still required if a viable on-board storage technology is to be developed. A detailed discussion of the benefits of transitioning to a hydrogen-powered automotive fleet as well as the tremendous technical hurdles faced for the development of an on-board hydrogen storage system are provided here. A novel class of theoretically predicted nanostructured materials that could revolutionize hydrogen storage materials is also presented.


Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 382 ◽  
Author(s):  
Hegazy Rezk ◽  
Mohammed Alghassab ◽  
Hamdy A. Ziedan

NEOM City in Saudi Arabia is planned to be the first environmentally friendly city in the world that is powered by renewable energy sources minimizing CO2 emissions to reduce the effect of global warming according to Saudi Arabia’s Vision 2030. In recent years, Saudi Arabia has had a problem with water scarcity. The main factors affecting water security are unequal water distribution, wrong use of water resources and using bad or less efficient irrigation techniques. This paper is aimed to provide a detailed feasibility and techno-economic evaluation of using several scenarios of a stand-alone hybrid renewable energy system to satisfy the electrical energy needs for an environmentally friendly seawater desalination plant which feeds 150 m−3 day−1 of freshwater to 1000 people in NEOM City, Saudi Arabia. The first scenario is based on hybrid solar photovoltaic PV, fuel cells (FC) with a hydrogen storage system and batteries system (BS), while the second and third scenarios are based on hybrid PV/BS and PV/FC with a hydrogen storage system, respectively. HOMER® software was used to obtain the optimal configuration based on techno-economic analysis of each component of the hybrid renewable energy systems and an economic and environmental point of view based on the values of net present cost (NPC) and cost of energy (COE). Based on the obtained results, the best configuration is PV/FC/BS. The optimal size and related costs for the optimal size are 235 kW PV array, 30 kW FC, 144 batteries, 30 kW converter, 130 kW electrolyzer, and 25 kg hydrogen tank is considered the best option for powering a 150 m3 reverse osmosis (RO) desalination plant. The values of net present cost (NPC) and the cost of energy (COE) are $438,657 and $0.117/kWh, respectively. From the authors’ point view, the proposed system is one among the foremost environmentally friendly systems to provide electric energy to the seawater desalination plant, especially when connecting to the utility grid, because it is ready to reduce a large amount of greenhouse gas emissions due to using oil/nature gas in utility generation stations to reduce the effect of global warming.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1960
Author(s):  
Tatsuya Hinokuma ◽  
Hooman Farzaneh ◽  
Ayas Shaqour

In order to reduce the load demand of buildings in Japan, this study proposes a grid-tied hybrid solar–wind–hydrogen system that is equipped with a maximum power point tracking (MPPT) system, using a fuzzy logic control (FLC) algorithm. Compared with the existing MPPTs, the proposed MPPT provides rapid power control with small oscillations. The dynamic simulation of the proposed hybrid renewable energy system (HRES) was performed in MATLAB-Simulink, and the model results were validated using an experimental setup installed in the Chikushi campus, Kyushu University, Japan. The techno-economic analysis (TEA) of the proposed system was performed to estimate the optimal configuration of the proposed HRES, subject to satisfying the required annual load in the Chikushi campus. The results revealed a potential of 2% surplus power generation from the proposed HRES, using the FLC-based MPPT system, which can guarantee a lower levelized cost of electricity (LOCE) for the HRES and significant savings of 2.17 million yen per year. The TEA results show that reducing the cost of the solar system market will lead to a reduction in LCOE of the HRES in 2030.


2001 ◽  
Vol 322 (1-2) ◽  
pp. 246-248 ◽  
Author(s):  
Huan-tang Yuan ◽  
Rui Cao ◽  
Lian-bang Wang ◽  
Yi-jing Wang ◽  
Xue-ping Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document