Importance of Turning to Renewable Energy Resources with Hydrogen as a Promising Candidate and on-board Storage a Critical Barrier

2005 ◽  
Vol 895 ◽  
Author(s):  
Anne C. Dillon ◽  
Brent P. Nelson ◽  
Yufeng Zhao ◽  
Yong-Hyun Kim ◽  
C. Edwin Tracy ◽  
...  

AbstractThe majority of the world energy consumption is derived from fossil fuels. Furthermore, the United States (US) consumption of petroleum vastly exceeds its production, with the majority of petroleum being consumed in the transportation sector. The increasing dependency on foreign fuel resources in conjunction with the severe environmental impacts of a petroleum-based society dictates that alternative renewable energy resources be developed. The US Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy and the Office of Basic Energy Sciences are currently promoting a vehicular hydrogen-based energy economy. However, none of the current on-board storage technologies are suitable for practical and safe deployment. Significant scientific advancement is therefore still required if a viable on-board storage technology is to be developed. A detailed discussion of the benefits of transitioning to a hydrogen-powered automotive fleet as well as the tremendous technical hurdles faced for the development of an on-board hydrogen storage system are provided here. A novel class of theoretically predicted nanostructured materials that could revolutionize hydrogen storage materials is also presented.

Energy ◽  
2018 ◽  
Vol 148 ◽  
pp. 1087-1102 ◽  
Author(s):  
A. Khosravi ◽  
R.N.N. Koury ◽  
L. Machado ◽  
J.J.G. Pabon

2021 ◽  
Vol 16 ◽  
pp. 41-51
Author(s):  
T. A. Boghdady ◽  
S. N. Alajmi ◽  
W. M. K. Darwish ◽  
M. A. Mostafa Hassan ◽  
A. Monem Seif

Renewable energy resources are a favorable solution for the coming energy. So, a great interest has been paid in the last decades for developing and utilizing renewable energy resources as wind energy. As it has a large energy contents and, particularize with the availability, but the major problems of it are represented in unmatched with load demand because the intermittency and fluctuation of nature conditions. Many studies focused on the new strategy of using Battery Storage System (BSS), and solving some problems that affect the DC bus voltage and the BSS by using Electrochemical Double Layer Capacitor (EDLC). Their capability is to store energy to realize the objective of time shifting of surplus energy with a high efficiency. The article main objective is to model, simulate, design, and study the performance of a Stand-Alone Wind Energy System with Hybrid Energy Storage (SAWS-HES). Thus, a complete model of the proposed system is implemented including a detailed modeling procedure of the HESS components. In addition to the main contribution, a study of the performance of EDLC only as a storage device that has fast response device integrated to the suggested system then it hybridized with the BSS. The HESS has the capability to compensate the DC bus voltage in the transient conditions and gives good stability for the system. The SAWS-HES utilizes one main renewable energy resource as wind turbine and overall model is employed under MATLAB/Simulink including a developed simple logic controller. The SAWS-HES simulation results presented a promising performance and have a satisfied performance in meeting the end load demands at different operation conditions. This ensures the SAWS-HES reliability and the effectiveness with HES and the controller in stand-alone operation formulating an excellent solution for the renewable energy systems


2021 ◽  
Author(s):  
Bramhaiah Kommula ◽  
Santanu Bhattacharyya

Considering the current global energy crisis and the most alarming environmental pollution issues, moving towards renewable energy resources instead of fossil fuels, should be the ultimate goal of modern civilization....


Resources ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 149 ◽  
Author(s):  
Avtar ◽  
Sahu ◽  
Aggarwal ◽  
Chakraborty ◽  
Kharrazi ◽  
...  

Renewable energy has received noteworthy attention during the last few decades. This is partly due to the fact that fossil fuels are depleting and the need for energy is soaring because of the growing population of the world. This paper attempts to provide an idea of what is being done by researchers in remote sensing and geographical information system (GIS) field for exploring the renewable energy resources in order to get to a more sustainable future. Several studies related to renewable energy resources viz. geothermal energy, wind energy, hydropower, biomass, and solar energy, have been considered in this paper. The focus of this review paper is on exploring how remote sensing and GIS-based techniques have been beneficial in exploring optimal locations for renewable energy resources. Several case studies from different parts of the world which use such techniques in exploring renewable energy resource sites of different kinds have also been included in this paper. Though each of the remote sensing and GIS techniques used for exploration of renewable energy resources seems to efficiently sell itself in being the most effective among others, it is important to keep in mind that in actuality, a combination of different techniques is more efficient for the task. Throughout the paper, many issues relating to the use of remote sensing and GIS for renewable energy are examined from both current and future perspectives and potential solutions are suggested. The authors believe that the conclusions and recommendations drawn from the case studies and the literature reviewed in the present study will be valuable to renewable energy scientists and policymakers.


Author(s):  
Giovanni Cerri ◽  
Claudio Corgnale ◽  
Coriolano Salvini

Many significant features lead to consider hydrogen as an interesting energy carrier. Hydrogen can be burned with pure oxygen thus the production of CO2 and NOx is avoided. Since molecular hydrogen does not exist on the earth it has to be produced from fossil fuels or from renewable energy sources. Energy from fossil fuels can be transferred into hydrogen and released elsewhere. So relevant reduction of emission of pollutant can be achieved in critical zones at the centres of large cities. Nevertheless the losses occurring during production, distribution and storage of hydrogen lead to an increased consumption of the primary energy source (fossil fuels) and to increased emission levels (CO2 and others). Hydrogen can be obtained from renewable sources such as the solar energy and used in situ for power generation. In this case hydrogen can act as an energy carrier which allows a local energy storage. In such a way the time dependent availability of the solar energy and the production level of the power plant can be decoupled. In a distributed generation context a small size solar power plant equipped with a hydrogen storage system has been studied. Different storage options have been investigated and compared. Finally a liquid hydrogen storage system is proposed. The peculiarities of the selected system allow a reduction of losses, size of machinery and energy requirements. The paper presents an analysis of the more relevant issues related to the different hydrogen storage options suitable for the present application. After the characterization of the solar field in terms of energy availability and the specifications of both the hydrogen production system and the power generation unit, the design of a liquid hydrogen storage system is presented and widely discussed. This method is particularly useful in the plants management (for example nuclear or coal plants), where it’s impossible or very difficult to modify power level, as well. So, such a static system would be useful in order to allow power modulation by H2 plant. In order to do this, a research for individuating high volumic (and mass) specific capacity systems should be driven.


2020 ◽  
Vol 4 (9) ◽  
pp. 4390-4414
Author(s):  
Koray Alper ◽  
Kubilay Tekin ◽  
Selhan Karagöz ◽  
Arthur J. Ragauskas

Fossil fuels must be replaced with renewable energy resources to ensure sustainable development, reduce the dependence on fossil fuels, address environmental challenges including climate change.


2018 ◽  
Vol 24 (1) ◽  
pp. 58-64
Author(s):  
Ionuț Alin Cirdei

Abstract Energy security is a matter of particular importance to all the world's states, whether they are producers or consumers of energy resources. For a long time, fossil energy resources have been the only source of energy used on a planetary scale. When mankind realized that fossil energy resources are a finite source of energy and that their intensive use causes many environmental problems, the most important of which is related to global warming, they have tried to find alternative sources of energy. Thus, concerns have arisen about the use of renewable energy on a wider scale, with both individual concerns of states that have potential in this area and collective concerns, such as at EU level, which has proposed by 2020, the share of energy from renewable sources used by the Union states is at least 20% of total consumption. Renewable energy resources may be an alternative to fossil fuels, but at the same time it has a number of limitations and vulnerabilities. Ensuring energy security means a comprehensive approach, understanding of limitations and reducing vulnerabilities


Author(s):  
Zaineb Nisar Jan

Abstract: In the present world where environmental issues are posing a great threat to the survival of mankind a better yet effective way of reducing carbon emissions and improving the environment by less usage of fossil fuels was suggested. This approach was called microgrid (MG). Renewable energy resources could be used effectively to produce electricity and can be easily integrated with the conventional grid. This paper elaborates on the basic concept of microgrid, and then describes the challenges and future prospects of the microgrid. Distribution generators along with energy storage devices and proper interfacing power electronic devices are used. Working on the basis of the type of microgrid is also discussed in this paper. Keywords: Renewable energy resources, distributed energy, AC microgrid, DC microgrid, energy management.


Sign in / Sign up

Export Citation Format

Share Document