scholarly journals Temporal variations in the primary energy use and greenhouse gas emissions of electricity provided by the Swiss grid

Energy ◽  
2018 ◽  
Vol 161 ◽  
pp. 573-582 ◽  
Author(s):  
Didier Vuarnoz ◽  
Thomas Jusselme
2019 ◽  
Vol 4 (2) ◽  
pp. 177-184
Author(s):  
Joakim Haraldsson ◽  
Maria Therese Johansson

The Paris Agreement includes the goals of ‘holding the increase in the global average temperature to well below 2°C above pre-industrial levels’ and ‘making finance flows consistent with a pathway towards low greenhouse gas emissions’. Industrial energy efficiency will play an important role in meeting those goals as well as becoming a competitive advantage due to reduced costs for companies. The aluminium industry is energy intensive and uses fossil fuels both for energy purposes and as reaction material. Additionally, the aluminium industry uses significant amounts of electricity. The electrolysis process in the primary production of aluminium is the most energy- and carbon-intensive process within the aluminium industry. The aim of this paper is to study the effects on primary energy use, greenhouse gas emissions and costs when three energy efficiency measures are implemented in the electrolysis process. The effects on the primary energy use, greenhouse gas emissions and costs are calculated by multiplying the savings in final energy use by a primary energy factor, emissions factor and price of electricity, respectively. The results showed significant savings in primary energy demand, greenhouse gas emissions and cost from the implementation of the three measures. These results only indicate the size of the potential savings and a site-specific investigation needs to be conducted for each plant. This paper is a part of a research project conducted in close cooperation with the Swedish aluminium industry.


2011 ◽  
Vol 2 (4) ◽  
pp. 247-259 ◽  
Author(s):  
S. J. Kenway ◽  
P. Lant ◽  
T. Priestley

To date, key water–energy connections have not been systematically quantified. Nor has their potential for contributing to greenhouse gas mitigation been evaluated. Lack of knowledge of these links, particularly within cities, is viewed as a major limitation to energy-sensitive urban water management and integrated urban design. This paper fills part of this void. The key contribution is a new conceptual model coupled with a systematic review of the connections of influence. Drawing on Australian and international data, the results provide a structured estimate of water-related energy use and associated emissions in a hypothetical city of 1,000,000 people. This demonstrates that water-related energy use accounts for 13% of total electricity and 18% of the natural gas used by the population in the average case. This represents 9% of the total primary energy demand within Australia or 8% of total national territorial greenhouse gas emissions. Residential, industrial and commercial water-related energy use constitutes 86% of water-related greenhouse gas emissions. We conclude that urban water is a significant and overlooked lever that could significantly influence urban energy consumption.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5664
Author(s):  
Wenjing Wei ◽  
Peter B. Samuelsson ◽  
Anders Tilliander ◽  
Rutger Gyllenram ◽  
Pär G. Jönsson

The primary energy consumption and greenhouse gas emissions from nickel smelting products have been assessed through case studies using a process model based on mass and energy balance. The required primary energy for producing nickel metal, nickel oxide, ferronickel, and nickel pig iron is 174 GJ/t alloy (174 GJ/t contained Ni), 369 GJ/t alloy (485 GJ/t contained Ni), 110 GJ/t alloy (309 GJ/t contained Ni), and 60 GJ/t alloy (598 GJ/t contained Ni), respectively. Furthermore, the associated GHG emissions are 14 tCO2-eq/t alloy (14 tCO2-eq/t contained Ni), 30 t CO2-eq/t alloy (40 t CO2-eq/t contained Ni), 6 t CO2-eq/t alloy (18 t CO2-eq/t contained Ni), and 7 t CO2-eq/t alloy (69 t CO2-eq/t contained Ni). A possible carbon emission reduction can be observed by comparing ore type, ore grade, and electricity source, as well as allocation strategy. The suggested process model overcomes the limitation of a conventional life cycle assessment study which considers the process as a ‘black box’ and allows for an identification of further possibilities to implement sustainable nickel production.


2018 ◽  
Author(s):  
Adrian Camilleri ◽  
Richard P. Larrick ◽  
Shajuti Hossain ◽  
Dalia Echeverri

2021 ◽  
Vol 1 ◽  
Author(s):  
Jennie Moore

The British Columbia Institute of Technology (BCIT) is Canada's premier polytechnic. In 2008, BCIT partnered with its local electricity utility to hire a full-time energy manager. The following year, BCIT's School of Construction and the Environment initiated a campus-as-living-lab of sustainability project called Factor Four in the seven buildings it occupies on BCIT's main campus in Burnaby. The purpose was to explore whether a four-fold (75%) reduction in materials and energy use could be achieved without compromising service levels. By 2016, the project achieved a 50% reduction in energy use and associated greenhouse gas emissions. Factor Four attracted over four million dollars in funding, engaged over 250 students from 12 educational programs, and produced over $200,000 savings annually. In 2017, BCIT set an ambitious target to reduce its annual greenhouse gas emissions 33% below 2007 levels by 2023, and 80% by 2050, across all five of its campuses. BCIT’s ultimate goal is to become both greenhouse gas neutral and a net energy producer. By setting ambitious targets and systematically implementing energy efficiency improvements, utilizing waste-heat exchange, fuel switching, and developing on-site renewable energy, BCIT is on track to achieving its energy management and climate change goals.


Sign in / Sign up

Export Citation Format

Share Document