scholarly journals Energy Consumption and Greenhouse Gas Emissions of Nickel Products

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5664
Author(s):  
Wenjing Wei ◽  
Peter B. Samuelsson ◽  
Anders Tilliander ◽  
Rutger Gyllenram ◽  
Pär G. Jönsson

The primary energy consumption and greenhouse gas emissions from nickel smelting products have been assessed through case studies using a process model based on mass and energy balance. The required primary energy for producing nickel metal, nickel oxide, ferronickel, and nickel pig iron is 174 GJ/t alloy (174 GJ/t contained Ni), 369 GJ/t alloy (485 GJ/t contained Ni), 110 GJ/t alloy (309 GJ/t contained Ni), and 60 GJ/t alloy (598 GJ/t contained Ni), respectively. Furthermore, the associated GHG emissions are 14 tCO2-eq/t alloy (14 tCO2-eq/t contained Ni), 30 t CO2-eq/t alloy (40 t CO2-eq/t contained Ni), 6 t CO2-eq/t alloy (18 t CO2-eq/t contained Ni), and 7 t CO2-eq/t alloy (69 t CO2-eq/t contained Ni). A possible carbon emission reduction can be observed by comparing ore type, ore grade, and electricity source, as well as allocation strategy. The suggested process model overcomes the limitation of a conventional life cycle assessment study which considers the process as a ‘black box’ and allows for an identification of further possibilities to implement sustainable nickel production.

2020 ◽  
Vol 6 (1) ◽  
pp. 103-112
Author(s):  
Wenjing Wei ◽  
Peter B. Samuelsson ◽  
Anders Tilliander ◽  
Rutger Gyllenram ◽  
Pär G. Jönsson

AbstractMolybdenum is mainly used as an alloy material in the iron and steel industry and typically in the form of ferromolybdenum (FeMo). The current study aims to evaluate the energy consumption and greenhouse gas emissions (GHG) of four ferromolybdenum production cases using inventory inputs from a process model based on mass and energy conservations. The total energy required for producing 1 tonne of FeMo can vary between 29.1 GJ/t FeMo and 188.6 GJ/t FeMo. Furthermore, the corresponding GHG emissions differ from 3.16 tCO2-eq/t FeMo to 14.79 tCO2-eq/t FeMo. The main variances are from the mining and beneficiation stages. The differences in these stages come from the beneficiation degree (ore grade) and the mine type (i.e., co-product from copper mining). Furthermore, the mine type has a larger impact on the total energy consumption and GHG emissions than the beneficiation degree. More specifically, FeMo produced as co-product from copper mining has a lower environmental impact measured as the energy consumption and GHG emission among all the four cases. The inventory, consumed energy or associated GHG emission is independent on the initial ore grade and mine type in the downstream production stages such as roasting and smelting. Also, transport has the least impact on the energy consumption and GHG emission among all production stages.


2012 ◽  
Vol 616-618 ◽  
pp. 1148-1153
Author(s):  
Dong Sun ◽  
Chu Xia Tong

This paper attempts to discuss the embodied energy consumption and embodied greenhouse gas emissions in manufacturing industry. Based the on input-output theory, this paper establishes the calculation model, which gives the calculation of embodied energy consumption and embodied greenhouse gas emissions of 2002 and 2007 respectively. By comparison, it draws the conclusion that the total direct energy consumption of 2007 is much more than the year of 2002, while the total embodied energy consumption is less than the year of 2002. However, Non-metallic mineral products, Metal smelting and pressing and Electric equipment and machinery perform otherwise. The reason accounting for the calculation results is that the embodied energy intensity is greatly decreased.


2018 ◽  
Vol 236 ◽  
pp. 02009
Author(s):  
Martina Hlatka ◽  
Maria Stopkova

The paper is dedicated to calculating and declaring energy consumption and greenhouse gas emissions in an automotive component manufacturing company. The calculation was carried out on the bases of EN 16258. By this Directive, it is set out a procedure for determining the energy consumption and greenhouse gas emissions from transport services of all transport sectors.


2014 ◽  
Vol 1 (1) ◽  
pp. 29
Author(s):  
Rulli Pratiwi Setiawan ◽  
Ema Umilia ◽  
Ketut Dewi Martha Erli Handayeni

<span style="font-size: 9pt; color: #000000; font-style: normal; font-variant: normal;">Population growth is happening in cities, including Surabaya as the second largest <span style="font-size: 9pt; color: #000000; font-style: normal; font-variant: normal;">metropolitan region in Indonesia. The population growth has an impact to the residential <span style="font-size: 9pt; color: #000000; font-style: normal; font-variant: normal;">density, whereas residential is usually the largest part of land use in urban areas. In <span style="font-size: 9pt; color: #000000; font-style: normal; font-variant: normal;">urabaya, residential use covers more than 60% of the total area. The intensive use of <span style="font-size: 9pt; color: #000000; font-style: normal; font-variant: normal;">residential area has impacts on the environment. One significant issue is the consumption of <span style="font-size: 9pt; color: #000000; font-style: normal; font-variant: normal;">energy that produces greenhouse gas emissions. This study is aimed at explaining the <span style="font-size: 9pt; color: #000000; font-style: normal; font-variant: normal;">relationships between residential density and greenhouse gas emissions in Surabaya City, <span style="font-size: 9pt; color: #000000; font-style: normal; font-variant: normal;">Indonesia. The residential density will be divided into three categories, i.e. low, medium and <span style="font-size: 9pt; color: #000000; font-style: normal; font-variant: normal;">high density. The category of density is taken from the Identification Report of Surabaya <span style="font-size: 9pt; color: #000000; font-style: normal; font-variant: normal;">Spatial Plan. The results of this study indicate that there are significant differences in the <span style="font-size: 9pt; color: #000000; font-style: normal; font-variant: normal;">electrical energy consumption for the household sector in each residential density. These <span style="font-size: 9pt; color: #000000; font-style: normal; font-variant: normal;">differences are mainly influenced by variables such as car ownership, ventilation system, the <span style="font-size: 9pt; color: #000000; font-style: normal; font-variant: normal;">use of electrical power, cooking fuel and the way to use the home appliances. The highest <span style="font-size: 9pt; color: #000000; font-style: normal; font-variant: normal;">total energy consumption per month exists in high density type. Although the average <span style="font-size: 9pt; color: #000000; font-style: normal; font-variant: normal;">smallest energy consumption per household exists in medium density, the total energy <span style="font-size: 9pt; color: #000000; font-style: normal; font-variant: normal;">consumption in medium density is much greater than that in the low density because the <span style="font-size: 9pt; color: #000000; font-style: normal; font-variant: normal;">number of households in medium density is greater. The final result shows that the <span style="font-size: 9pt; color: #000000; font-style: normal; font-variant: normal;">correlation between the total production of GHG emissions (CO2) and density has a direct or <span style="font-size: 9pt; color: #000000; font-style: normal; font-variant: normal;">positive relationship, which means that the greater the density, the higher the production <span style="font-size: 9pt; color: #000000; font-style: normal; font-variant: normal;">rate of GHG emissions (CO2).</span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span><br style="font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-align: -webkit-auto; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px;" /></span>


2019 ◽  
Vol 11 (22) ◽  
pp. 6482
Author(s):  
Katerina Sojkova ◽  
Martin Volf ◽  
Antonin Lupisek ◽  
Roman Bolliger ◽  
Tomas Vachal

Energy retrofitting of existing building stock has significant potential for the reduction of energy consumption and greenhouse gas emissions. Roughly half of the CO2 emissions from Czech building stock are estimated to be allocated to residential buildings. Approximately one-third of the Czech residential building stock have already been retrofitted, but retrofitting mostly takes place in large cities due to greater income. A favourable concept for the mass retrofitting of residential building stock, affordable even in low-income regions, was of interest. For a reference building, multi-criteria assessment of numerous retrofitting measures was performed. The calculation involved different building elements, materials, solutions, and energy-efficiency levels in combination with various heating systems. The assessment comprised environmental impact, represented by operational and embodied primary energy consumption and greenhouse gas emissions, and investment and operational costs using the annuity method. Analysis resulted in the identification of favourable retrofitting measures and showed that complex building retrofitting is advantageous from both a cost and an environmental point of view. The environmental burden could be decreased by approximately 10–30% even without photovoltaic installation, and costs per year could be decreased by around 40%.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Muhammad Imran ◽  
Orhan Ozcatalbas

AbstractThis study aimed to model energy use, energy efficiency, and greenhouse gas emissions in rain-fed wheat production by using a nonparametric data envelopment analysis (DEA) method. Data were collected through face-to-face interviews with 140 wheat farmers in 4 districts of Antalya Province. The energy inputs (independent variables) were human labor, seeds, chemical fertilizers, herbicides, and diesel fuel, and the energy output was the dependent variable. The results showed that the average energy consumption and the output energy for the studied wheat production system were 21. 07GJ ha−1 and 50. 99 GJ ha−1, respectively, and the total GHG emissions were calculated to be 592.12 kg CO2eq ha−1. Chemical fertilizer has the highest share of energy consumption and total GHG emissions. Based on the results from DEA, the technical efficiency of the farmers was found to be 0.81, while pure technical and scale efficiencies were 0.65 and 0.76, respectively. The results also highlighted that there is a potential opportunity to save approximately 14% (2.93 GJ ha−1) of the total energy consumption and consequently a 17% reduction in GHG emissions by following the optimal amounts of energy consumption while keeping the wheat yield constant. Efficient use of energy and reduction in GHG emissions will lead to resource efficiency and sustainable production, which is the main aim of the green economy.


2021 ◽  
Vol 17 (1) ◽  
pp. 1-16
Author(s):  
Asim Hasan ◽  
Rahil Akhtar Usmani

Rising greenhouse gas emissions is an important issue of the current time. India’s massive greenhouse gas emissions is ranked third globally. The escalating energy demand in the country has opened the gateway for further increase in emissions. Recent studies suggest strong nexus between energy consumption, economic growth, and carbon emissions. This study has the objective to empirically test the aforementioned interdependencies. The co-integration test and multivariate vector error correction model (VECM) are used for the analysis and the Granger Causality test is used to establish the direction of causality. The time-series data for the period of 1971–2011 is used for the analysis. The results of the study confirm strong co-integration between variables. The causality results show that economic growth exerts a causal influence on carbon emissions, energy consumption exerts a causal influence on economic growth, and carbon emissions exert a causal influence on economic growth. Based on the results, the study suggests a policy that focuses on energy conservation and gradual replacement of fossil fuels with renewable energy sources, which would be beneficial for the environment and the society.


Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
Florian Stuhlenmiller ◽  
Steffi Weyand ◽  
Jens Jungblut ◽  
Liselotte Schebek ◽  
Debora Clever ◽  
...  

Modern industry benefits from the automation capabilities and flexibility of robots. Consequently, the performance depends on the individual task, robot and trajectory, while application periods of several years lead to a significant impact of the use phase on the resource efficiency. In this work, simulation models predicting a robot’s energy consumption are extended by an estimation of the reliability, enabling the consideration of maintenance to enhance the assessment of the application’s life cycle costs. Furthermore, a life cycle assessment yields the greenhouse gas emissions for the individual application. Potential benefits of the combination of motion simulation and cost analysis are highlighted by the application to an exemplary system. For the selected application, the consumed energy has a distinct impact on greenhouse gas emissions, while acquisition costs govern life cycle costs. Low cycle times result in reduced costs per workpiece, however, for short cycle times and higher payloads, the probability of required spare parts distinctly increases for two critical robotic joints. Hence, the analysis of energy consumption and reliability, in combination with maintenance, life cycle costing and life cycle assessment, can provide additional information to improve the resource efficiency.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Hao ◽  
Yu Ruihong ◽  
Zhang Zhuangzhuang ◽  
Qi Zhen ◽  
Lu Xixi ◽  
...  

AbstractGreenhouse gas (GHG) emissions from rivers and lakes have been shown to significantly contribute to global carbon and nitrogen cycling. In spatiotemporal-variable and human-impacted rivers in the grassland region, simultaneous carbon dioxide, methane and nitrous oxide emissions and their relationships under the different land use types are poorly documented. This research estimated greenhouse gas (CO2, CH4, N2O) emissions in the Xilin River of Inner Mongolia of China using direct measurements from 18 field campaigns under seven land use type (such as swamp, sand land, grassland, pond, reservoir, lake, waste water) conducted in 2018. The results showed that CO2 emissions were higher in June and August, mainly affected by pH and DO. Emissions of CH4 and N2O were higher in October, which were influenced by TN and TP. According to global warming potential, CO2 emissions accounted for 63.35% of the three GHG emissions, and CH4 and N2O emissions accounted for 35.98% and 0.66% in the Xilin river, respectively. Under the influence of different degrees of human-impact, the amount of CO2 emissions in the sand land type was very high, however, CH4 emissions and N2O emissions were very high in the artificial pond and the wastewater, respectively. For natural river, the greenhouse gas emissions from the reservoir and sand land were both low. The Xilin river was observed to be a source of carbon dioxide and methane, and the lake was a sink for nitrous oxide.


2021 ◽  
Author(s):  
Ain Kull ◽  
Iuliia Burdun ◽  
Gert Veber ◽  
Oleksandr Karasov ◽  
Martin Maddison ◽  
...  

&lt;p&gt;Besides water table depth, soil temperature is one of the main drivers of greenhouse gas (GHG) emissions in intact and managed peatlands. In this work, we evaluate the performance of remotely sensed land surface temperature (LST) as a proxy of greenhouse gas emissions in intact, drained and extracted peatlands. For this, we used chamber-measured carbon dioxide (CO&lt;sub&gt;2&lt;/sub&gt;) and methane (CH&lt;sub&gt;4&lt;/sub&gt;) data from seven peatlands in Estonia collected during vegetation season in 2017&amp;#8211;2020. Additionally, we used temperature and water table depth data measured in situ. We studied relationships between CO&lt;sub&gt;2&lt;/sub&gt;, CH&lt;sub&gt;4&lt;/sub&gt;, in-situ parameters and remotely sensed LST from Landsat 7 and 8, and MODIS Terra. Results of our study suggest that LST has stronger relationships with surface and soil temperature as well as with ecosystem respiration (R&lt;sub&gt;eco&lt;/sub&gt;) over drained and extracted sites than over intact ones. Over the extracted cites the correlation between R&lt;sub&gt;eco&lt;/sub&gt; CO&lt;sub&gt;2&lt;/sub&gt; and LST is 0.7, and over the drained sites correlation is 0.5. In natural sites, we revealed a moderate positive relationship between LST and CO&lt;sub&gt;2&lt;/sub&gt; emitted in hollows (correlation is 0.6) while it is weak in hummocks (correlation is 0.3). Our study contributes to the better understanding of relationships between greenhouse gas emissions and their remotely sensed proxies over peatlands with different management status and enables better spatial assessment of GHG emissions in drainage affected northern temperate peatlands.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document