A methodological approach to the determination of optimal parameters of district heating systems with several heat sources

Energy ◽  
2019 ◽  
Vol 185 ◽  
pp. 350-360 ◽  
Author(s):  
Valery A. Stennikov ◽  
Evgeny A. Barakhtenko ◽  
Dmitry V. Sokolov
2021 ◽  
Vol 136 (1) ◽  
Author(s):  
Eero Hirvijoki ◽  
David Pfefferlé ◽  
Manasvi Lingam

AbstractThis paper assesses the potential of intermediate-to-deep geothermal wells for district heating purposes in non-hot spot regions as a means for replacing carbon-intensive heat sources. In analysing the problem of heat transfer from the bedrock to a flowing coolant in the well, we perform parameter scans to assess the longevity and power density of different-size wells and derive analytical estimates to explain salient characteristics of the well behaviour. The results are then utilized to illustrate how intermediate-to-deep geothermal wells would compare with the requirements of typical large-scale district heating systems, by using the city of Helsinki in Finland as an example.


2021 ◽  
pp. 54-62
Author(s):  
V. Stennikov ◽  
E. Mednikova ◽  
I. Postnikov

The paper presents a method developed to determine an effective heating radius (EHR) in district heating systems (DHSs) in terms of reliable heat supply to consumers. The search for EHR for various heating mains from the considered district heating source in DHS involves identifying heat source operation zones in various city areas. At the same time, apart from the search for EHR, the nodal reliability indices are estimated for each consumer and then used (if necessary) to adjust the obtained EHR. The paper briefly discusses some of the practical research results.


2020 ◽  
Vol 209 ◽  
pp. 02027
Author(s):  
Dmitry Sokolov ◽  
Evgeny Barakhtenko

The paper presents a new methodological approach to developing a universal platform for the design of district heating systems. The reasons for the development of the platform are considered and a scientific statement of the problem is given. The main methodological results obtained during the development of the platform are presented. The description of the scientific and practical significance of the results is given. A new methodological approach was developed using modern information technologies. The methodological approach is based on the paradigm of Model-Driven Engineering. The essence of this paradigm is that the software is generated on the base of formal description provided by the models. The proposed approach allows one to successfully solve the problem of separation of methods for solving applied problems and models of elements of a district heating system. The paper describes the developed architecture of the software platform. A description of the architectural subsystems of the platform is presented: the computing subsystem and the graphics subsystem.


2020 ◽  
Vol 216 ◽  
pp. 01058
Author(s):  
Ekaterina Mednikova ◽  
Ivan Postnikov

Methods for determining the effective heating radius (EHR) in district heating systems (DHS) are developed, taking into account ensuring of reliable heat supply to consumers. EHR is such a length (distance) of a heat network (HN) from a district heat source (HS) to a consumer, within which the district heat supply of a given consumer is economically more profitable than a distributed (autonomic) one. Thus, the search for EHR for different transmission heat pipelines (TP) connected to the considered HS determines of its operation zones in different districts of the city. In addition, to the main problem of the EHR search, the assessment of nodal reliability indices (RI) for each consumer is carried out, on the basis of which the obtained EHR solutions are corrected (if necessary). As a result, we can determine the zones of district heating in DHS, within the framework of which not only energy and economically effective, but also reliable heat supply to consumers is provided. The developed methodical ensuring was used in the development of an optimal heat supply scheme for the Irkutsk city (Eastern Siberia, Russia). The brief review on the results of the conducted practical researches case study is presented.


2018 ◽  
Vol 11 (3) ◽  
pp. 184-191
Author(s):  
V. I. Sharapov ◽  
M. E. Orlov ◽  
M. M. Zamaleev ◽  
P. E. Chaukin

The factors determining the need for modernization of urban district heating systems with combined heat and power are considered. It is noted that these factors include a significant reduction in thermal loads, new technical and technological opportunities for improving district heating systems, the change in legislation in the field of energy and heat supplying. It is shown that the main disadvantage of the current state of Russian cogeneration systems is a decrease in the combined production of heat and power, leading to a decrease in the efficiency of fuel use, due to unreasonably extensive use of autonomous heat supply sources in many regions. Besides, combined heat and power plants (CHPP) experience a lack of a level playing field in competition with other power plants in the electricity market, with a technically and economically unjustified ban imposed on open heat supply systems. For effective use of the benefits of cogeneration and district heating, the following top priority measures are recommended. It is required to legislate the economic benefits for the combined production of electricity and heat. It is necessary to adjust the model of the wholesale electric energy and power market to eliminate discrimination of CHPP in this market. The construction of autonomous heat sources in urban areas with CHPPs is to be prohibited unless substantiated with an adequate feasibility study. Decommissioning of CHPPs and heat sources, which are used to back up CHPPs, must only be permitted subject to a mandatory feasibility study, including assessment of effects on reliability of heat supply of urban consumers. The Russian Federal Law “On heat supply” is to be adjusted to lift the total ban on the use of open heat supply systems. It is required to create a national body with sufficient authority to control and coordinate the activities of energy companies to modernize cogeneration and district heating systems.


2020 ◽  
Vol 209 ◽  
pp. 02028
Author(s):  
Ivan Postnikov ◽  
Andrey Penkovskii ◽  
Ekaterina Mednikova

The paper presents a synthesis of research results on the development of scientific and methodo-logical support for the comprehensive solution of the main technical, economic and organizational problems of designing, functioning and development of modern district heating systems (DHS). These studies were conducted at the Melentiev Energy Systems Institute of SB RAS (Irkutsk city) by the scientific team of the Laboratory of Heat Supply Systems. Within the framework of the developed scientific and methodological support, the following basic problems were solved: optimization of levels of district heating in DHS with feasibility study for connecting new consumers, selection of optimal forms and models of heating market for DHS, comprehensive analysis and ensuring (optimization) reliability of DHS taking into account the fuel supply of heating sources (HS), and other additional problems. Based on the developed scientific and methodological ensuring following practical researches were carried out on existing DHS schemes of cities of the Irkutsk region: optimal management of DHS in Angarsk, Irkutsk region, taking into account the diverging interests of heating market participants; determination of the optimal scale of development of the existing DHS in Irkutsk based on the optimization of the effective heat supply radius taking into account the reliability of heating to consumers; comprehensive reliability analysis of DHS in Shelekhov of Irkutsk region, taking into account the fuel supply to HS.


Sign in / Sign up

Export Citation Format

Share Document