Blade rotation angle on energy performance and tip leakage vortex in a mixed flow pump as turbine at pump mode

Energy ◽  
2020 ◽  
Vol 206 ◽  
pp. 118084 ◽  
Author(s):  
Yabin Liu ◽  
Yadong Han ◽  
Lei Tan ◽  
Yuming Wang
Author(s):  
Leilei Ji ◽  
Wei Li ◽  
Weidong Shi

In order to investigate the effect of impeller tip clearance on internal flow fields and the rotating stall inception impacted by tip leakage vortex and inlet unsteady flow in a mixed-flow pump, mixed-flow pump models with tip clearances of 0.5 mm, 0.8 mm, and 1.1 mm were numerically calculated, and then the energy performance curves and internal flow structures were obtained and compared. The results show that the pump efficiency and the internal flow fields of numerical calculation are in good agreement with experimental results at design flow rate and near-stall condition. A portion of the positive slope segment appears in the energy performance curves under different tip clearances. The lowest head of the mixed-flow pump in the positive slope region decreases with the increase of the tip clearance while the highest head shows an opposite situation indicating that mixed-flow pumps are easier to stall under small tip clearance. At the design flow rate condition, the tip leakage vortex is relatively stable under different tip clearances and appears as a “snail shell” shape, whereas in rotating stall conditions, the “snail shell” shape disappear and the tip leakage flow on blade front forms a “flat” vortex structure. The inlet swirl flow not only affects the tip leakage flow in rotating stall conditions under different tip clearances, but also blocks the fluid from the inlet pipe. Under the circumstance of the same tip clearance, the main frequency amplitude of pressure pulsation coefficient gradually shifts away from blade passing frequency (96.67 Hz) to the axial frequency (24.17 Hz) when the pump operates in the stall condition.


2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Yabin Liu ◽  
Lei Tan

Tip clearance in pump induces tip leakage vortex (TLV), which interacts with the main flow and leads to instability of flow pattern and decrease of pump performance. In this work, the characteristics of TLV in a mixed-flow pump are investigated by the numerical simulation using shear stress transport (SST) k–ω turbulence model with experimental validation. The trajectory of the primary tip leakage vortex (PTLV) is determined, and a power function law is proposed to describe the intensity of the PTLV core along the trajectory. Spatial–temporal evolution of the TLV in an impeller revolution period T can be classified into three stages: splitting stage, developing stage, and merging stage. The TLV oscillation period TT is found as 19/160 T, corresponding to the frequency 8.4 fi (fi is impeller rotating frequency). Results reveal that the TLV oscillation is intensified by the sudden pressure variation at the junction of two adjacent blades. On analysis of the relative vorticity transport equation, it is revealed that the relative vortex stretching item in Z direction is the major source of the splitting and shedding of the PTLV. The dominant frequency of pressure and vorticity fluctuations on the PTLV trajectory is 8.4 fi, same as the TLV oscillation frequency. This result reveals that the flow instability in the PTLV trajectory is dominated by the oscillation of the TLV. The blade number has significant effect on pressure fluctuation in tip clearance and on blade pressure side, because the TLV oscillation period varies with the circumferential length of flow passage.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Yabin Liu ◽  
Lei Tan

Abstract Tip clearance results in the leakage flow from blade pressure side to suction side, which will further cause the tip leakage vortex (TLV). Moreover, the flow pattern in an impeller is seriously deteriorated due to the TLV and its interaction with the main stream. In this work, the TLV in a mixed flow pump is investigated by numerical simulation validated by experiment measurement. The primary tip leakage vortex (PTLV) trajectory is specially studied with consideration of the tip clearance size δ, the impeller blade number Zi, and the impeller rotational speed n. The results show that δ slightly shifts the separation point (SP) of the PTLV but rarely affects the separation angle α. The increase in Zi and the decrease in n both lead to the shift of the SP toward the blade trailing edge and the decrease in α. Furthermore, a theoretical prediction model is proposed to predict the PTLV trajectory, by which the axial position and radial position of PTLV trajectory versus the rotation angle can be predicted. The proposed model is verified to be accurate to predict the PTLV trajectory, especially for the PTLV trajectory in the main flow passage. The dynamic evolution of TLV under different tip clearance sizes can all be classified into the same three stages: splitting stage, developing stage, and merging stage. Meanwhile, the dynamic evolution frequency fe is the same as the impeller rotational frequency fi.


Author(s):  
Leilei Ji ◽  
Wei Li ◽  
Weidong Shi ◽  
Fei Tian ◽  
Shuo Li ◽  
...  

In order to study the effect of different numbers of impeller blades on the performance of mixed-flow pump “saddle zone”, the external characteristic test and numerical simulation of mixed-flow pumps with three different impeller blade numbers were carried out. Based on high-precision numerical prediction, the internal flow field and tip leakage flow field of mixed flow pump under design conditions and stall conditions are investigated. By studying the vorticity transport in the stall flow field, the specific location of the high loss area inside the mixed flow pump impeller with different numbers of blades is located. The research results show that the increase in the number of impeller blades improve the pump head and efficiency under design conditions. Compared to the 4-blade impeller, the head and efficiency of the 5-blade impeller are increased by 5.4% and 21.9% respectively. However, the increase in the number of blades also leads to the widening of the “saddle area” of the mixed-flow pump, which leads to the early occurrence of stall and increases the instability of the mixed-flow pump. As the mixed-flow pump enters the stall condition, the inlet of the mixed-flow pump has a spiral swirl structure near the end wall for different blade numbers, but the depth and range of the swirling flow are different due to the change in the number of blades. At the same time, the change in the number of blades also makes the flow angle at 75% span change significantly, but the flow angle at 95% span is not much different because the tip leakage flow recirculates at the leading edge. Through the analysis of the vorticity transport results in the impeller with different numbers of blades, it is found that the reasons for the increase in the values of the vorticity transport in the stall condition are mainly impacted by the swirl flow at the impeller inlet, the tip leakage flow at the leading edge and the increased unsteady flow structures.


Author(s):  
Desheng Zhang ◽  
Weidong Shi ◽  
Suqing Wu ◽  
Dazhi Pan ◽  
Peipei Shao ◽  
...  

In this paper, the tip leakage vortex (TLV) structures in an axial flow pump were investigated by numerical and experimental methods. Based on the comparisons of different blade tip clearance size (i.e., 0.5 mm, 1mm and 1.5mm) and different flow rate conditions, TLV trajectories were obtained by Swirling Strength method, and simulated by modified SST k-ω turbulence model with refined high-quality structured grids. A high-speed photography test was carried out to capture the tip leakage vortex cavitation in an axial flow pump with transparent casing. Numerical results were compared with the experimental leakage vortex trajectories, and a good agreement is presented. The detailed trajectories show that the start point of tip leakage vortex appears near the leading edge at small flow rate, and it moves from trailing edge to about 30% chord span at rated flow rate. At the larger flow rate condition, the starting point of TLV shifts to the middle of chord, and the direction of TLV moves parallel to the blade hydrofoil. As the increasing of the tip size, the start point of TLV trajectories moves to the central of chord and the minimum pressure in vortex core is gradually reduced.


Sign in / Sign up

Export Citation Format

Share Document