Flame structures and thermoacoustic instabilities of centrally-staged swirl flames operating in different partially-premixed modes

Energy ◽  
2021 ◽  
pp. 121512
Author(s):  
Xinyao Wang ◽  
Meng Han ◽  
Xiao Han ◽  
Chi zhang ◽  
Chih-Jen Sung
2018 ◽  
Vol 10 (3) ◽  
pp. 171-184 ◽  
Author(s):  
Meenatchidevi Murugesan ◽  
Balasubramanian Singaravelu ◽  
Abhijit K Kushwaha ◽  
Sathesh Mariappan

We investigate the onset of thermoacoustic instabilities in a turbulent combustor terminated with an area contraction. Flow speed is varied in a swirl-stabilized, partially premixed combustor and the system is observed to undergo a dynamical transition from combustion noise to instability via intermittency. We find that the frequency of thermoacoustic oscillations does not lock-on to any of the acoustic modes. Instead, we observe that the dominant mode in the dynamics of combustion noise, intermittency and thermoacoustic instability is a function of the flow speed. We also find that the observed mode is insensitive to the changes in acoustic field of the combustor, but it varies as a function of upstream flow time scale. This new kind of thermoacoustic instability was independently discovered in the recent theoretical analysis of premixed flames. They are known as intrinsic thermoacoustic modes. In this paper, we report the experimental observation and the route to flame intrinsic thermoacoustic instabilities in partially premixed flame combustors. A simplified low-order network model analysis is performed to examine the driving mechanism. Frequencies predicted by the network model analysis match well with the experimentally observed dominant frequencies. Intrinsic flame-acoustic coupling between the unsteady heat release rate and equivalence ratio fluctuations occurring at the location of fuel injection is found to play a key role. Further, we observe intrinsic thermoacoustic modes to occur only when the acoustic reflection co-efficients at the exit are low. This result indicates that thermoacoustic systems with increased acoustic losses at the boundaries have to consider the possibility of flame intrinsic thermoacoustic oscillations.


2014 ◽  
Vol 71 (1) ◽  
pp. 276-290 ◽  
Author(s):  
Mina Shahi ◽  
Jim B.W. Kok ◽  
J.C. Roman Casado ◽  
Artur K. Pozarlik

2014 ◽  
Vol 694 ◽  
pp. 474-477
Author(s):  
Jing Luo ◽  
Lian Sheng Liu ◽  
Zi Zhong Chen

An experimental and simulation work had been conducted to study a one-dimensional partially premixed methane/air counterflow flame in this paper. Flame images are obtained through experiments and computations using GRIMech 3.00 chemistry were performed for the flames studied. The partially premixing effects upon the flame were revealed by comparing the flame structures and emissions with premixed flames at the same equivalence ratio. The results show the premixed flame only has a single flame structure. However, PPF has distinct double flame structures at present equivalence ratio. Temperature is relatively high in the whole combustion zone for premixed flame, while, for PPF, there are two temperature peaks in a rich premixed reaction zone on the fuel side and a nonpremixed reaction zone on the oxidizer side respectively. For PPF, NO concentration in the nonpremixed zone is much higher compared to that in the rich premixed zone because of higher OH concentration in the nonpremixed zone.


Fuel ◽  
2021 ◽  
Vol 302 ◽  
pp. 121062
Author(s):  
Wei Gao ◽  
Jinghu Yang ◽  
Yong Mu ◽  
Fuqiang Liu ◽  
Shaolin Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document