Has mining agglomeration affected energy productivity in Africa?

Energy ◽  
2021 ◽  
pp. 122652
Author(s):  
Boqiang Lin ◽  
Rockson Sai
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Changjiang Li ◽  
Shuo Li

AbstractThe well-irrigated planting strategy (WI) consumes a large amount of energy and exacerbates greenhouse gas emissions, endangering the sustainable agricultural production. This 2-year work aims to estimate the economic benefit, energy budget and carbon footprint of a wheat–maize double cropping system under conventional rain-fed flat planting (irrigation once a year, control), ridge–furrows with plastic film mulching on the ridge (irrigation once a year, RP), and the WI in dry semi-humid areas of China. Significantly higher wheat and maize yields and net returns were achieved under RP than those under the control, while a visible reduction was found for wheat yields when compared with the WI. The ratio of benefit: cost under RP was also higher by 10.5% than that under the control in the first rotation cycle, but did not differ with those under WI. The net energy output and carbon output followed the same trends with net returns, but the RP had the largest energy use efficiency, energy productivity carbon efficiency and carbon sustainability among treatments. Therefore, the RP was an effective substitution for well–irrigated planting strategy for achieving sustained agricultural development in dry semi-humid areas.


2009 ◽  
Vol 68 (11) ◽  
pp. 2808-2817 ◽  
Author(s):  
Kerstin Enflo ◽  
Astrid Kander ◽  
Lennart Schön
Keyword(s):  

2006 ◽  
Vol 47 (9-10) ◽  
pp. 1063-1085 ◽  
Author(s):  
Narvendra Singh Chauhan ◽  
Pratap K.J. Mohapatra ◽  
Keshaw Prasad Pandey

Author(s):  
Zakiah Radhi Alhajji, Mohamed Elsayed Hafez Ali Zakiah Radhi Alhajji, Mohamed Elsayed Hafez Ali

Because of increased demand for electrical energy in the Kingdom of Saudi Arabia, which has resulted in an increase in carbon dioxide emissions, the electricity system in the Kingdom of Saudi Arabia is the largest in the Gulf region and the Arab world, with approximately 61.7 gigatons (GW) of peak demand and 89.2 gigatons (GW) of available capacity in 2018 of electricity power. It has grown rapidly over more than 20 years and has almost doubled in size since 2000. Where we observe that the total carbon dioxide emissions in the Kingdom of Saudi Arabia from 1990 to 2020; where shows rapid growth in emissions of carbon dioxide and greenhouse gases, as it was found that CO2 emissions in 1990 amounted to 151 million metric tons compared to 2011 when it reached about 435 million metric tons, and the increase continued until 2020 when it reached about 530 million metric tons. The comprehensive study relied on time series analysis to carefully analyze the electric energy productivity rate from fossil fuels and the significant amount of carbon dioxide emissions typically resulting from promptly burning fossil fuels to naturally produce electric energy. Therefore, the Kingdom of Saudi Arabia, through Vision 2030 and the Paris Agreement on Climate Change, looks to reduce the rate of carbon dioxide emissions in the field of electric power generation by diversifying the fuels used or replacing them with clean and renewable energy such as solar and wind energy.


2020 ◽  
Vol 5 (1) ◽  
pp. 56-60
Author(s):  
Wildan Gunawan ◽  
Suyitno Muslim ◽  
Imam Arif Rahardjo

This research is aimed to understand the effects of  rain fall and discharge rate towards hydro electric power plant productivity (case study at Kracak Sub Unit HPP, Bogor Regency Jawa Barat). Multiple regression tecnique analysis is used as research method with quantitative approach for describing the effects of rain fall and discharge rate towards hydro electric energy productivity. Based on Sub Unit PLTA Kracak during a highest down pour in June 2018 has gained electrical power about 173,583 kWh for 15,84 mm rain fall and the lowest rain fall in July 2018 is 0,86 mm only obtain 49,772 kWh electrical power with the average rain fall record in three stations is 8,9592 mm. Mean while, for the highest river discharge rate happened in February is 10,08 m3/detik which produce 198,296 kWh electrical power and the lowest in June that only gained 3,53 m3/detik which produce 49,772 kWh electrical power with the average of river discharge rate in 2018 is only 7,9858 m3/detik. The average of electrical power it self is only 156,0105 kWh for 8,9592 mm of rainfall and 7,9858 m3/detik river discharge rate record in 2018. The conclusion oh this research is the discharge rate in headwaters area is affected by rainfall intensity, but not necessarily affected to hydro electric energy productivity.   ABSTRAK Tujuan dari penelitian ini adalah untuk mengetahui pengaruh curah hujan dan debit air terhadap produktivitas energi listrik yang dihasilkan pada pembangkit listrik tenaga air (Studi Kasus: Sub Unit PLTA Kracak, Kabupaten Bogor Jawa Barat). Metode yang digunakan dalam penelitian ini adalah metode deskriptif dengan pendekatan kuantitatif teknik analisis data regresi berganda untuk mendiskripsikan data penelitian curah hujan dan debit air terhadap produktivitas energi listrik yang dihasilkan. Berdasarkan data hasil penelitian yang diperoleh di Sub Unit PLTA Kracak data curah hujan tertinggi pada tahun 2018 di Bulan Juni sebesar 15,84 mm dapat menghasilkan energi listrik sebesar 173,593 kWh dan terendah di Bulan Juli sebesar 0,86 mm dapat menghasilkan energi listrik sebesar  49,772 kWh dengan rata-rata pertahun 2018 yaitu sebesar 8,9592 mm di tiga stasiun. Sedangkan data debit air pada tahun 2018 tertinggi di Bulan Februari sebesar 10,08 m3/detik dapat menghasilkan energi listrik sebesar 198,296 kWh dan terendah di Bulan Juli sebesar 3,53 m3/detik dapat menghasilkan energi listrik sebesar 49,772 dengan rata-rata pertahun 2018 debit air sebesar 7,9858 m3/detik. Dengan rata-rata curah hujan 8,9592 mm dan debit air 7,9858 m3/detik dapat menghasilkan energi listrik rata-rata pertahun 2018 sebesar 156,0105 kWh selama tahun 2018. Dapat disimpulkan curah hujan tidak berpengaruh langsung terhadap produktivitas energi listrik yang dihasilkan sedangkan debit air berpengaruh terhadap produktivitas energi listrik.


2010 ◽  
Vol 19 (3) ◽  
pp. 35-54
Author(s):  
John A. “Skip” Laitner ◽  
Chris Poland Knight ◽  
Vanessa L. McKinney ◽  
Karen Ehrhardt-Martinez
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document