Performance of air and ground source heat pumps retrofitted to radiator heating systems and measures to reduce space heating temperatures in existing buildings

Energy ◽  
2021 ◽  
pp. 122952
Author(s):  
Manuel Lämmle ◽  
Jeannette Wapler ◽  
Danny Günther ◽  
Stefan Hess ◽  
Michael Kropp ◽  
...  
Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4395 ◽  
Author(s):  
Janne Hirvonen ◽  
Juha Jokisalo ◽  
Juhani Heljo ◽  
Risto Kosonen

To mitigate the effects of climate change, the European Union calls for major carbon emission reductions in the building sector through a deep renovation of the existing building stock. This study examines the cost-effective energy retrofit measures in Finnish detached houses. The Finnish detached house building stock was divided into four age classes according to the building code in effect at the time of their construction. Multi-objective optimization with a genetic algorithm was used to minimize the life cycle cost and CO2 emissions in each building type for five different main heating systems (district heating, wood/oil boiler, direct electric heating, and ground-source heat pump) by improving the building envelope and systems. Cost-effective emission reductions were possible with all heating systems, but especially with ground-source heat pumps. Replacing oil boilers with ground-source heat pumps (GSHPs), emissions could be reduced by 79% to 92% across all the studied detached houses and investment levels. With all the other heating systems, emission reductions of 20% to 75% were possible. The most cost-effective individual renovation measures were the installation of air-to-air heat pumps for auxiliary heating and improving the thermal insulation of external walls.


Author(s):  
Wessam El-Baz ◽  
Peter Tzscheutschler ◽  
Ulrich Wagner

There is a continuous growth of heat pump installations in residential buildings in Germany. The heat pumps were not only used for space heating and domestic hot water consumption but also to offer flexibility to the grid. the high coefficient of performance and the low cost of heat storages made the heat pumps an optimal candidate for the power to heat applications. Thus, several questions are raised about the optimal integration and control of the heat pump system with buffer storages to maximize its operation efficiency and minimize the operation costs. In this paper, an experimental investigation is performed to study the performance of a ground source heat pump (GSHP) with a combi-storage under several configurations and control factors. The experiments were performed on an innovative modular testbed that is capable of emulating a ground source to provide the heat pump with different temperature levels at different times of the day. Moreover, it can emulate the different building loads such as the space heating load and the domestic hot water consumption in real-time. The data gathered from the testbed and different experimental studies were used to develop a simulation model based on Modelica that can accurately simulate the dynamics of a GSHP in a building. The model was validated based on different metrics. Energetically, the difference between the developed model and the measured values was only 3.08\% and 4.18\% for the heat generation and electricity consumption, respectively.


2021 ◽  
Author(s):  
Manuel Lämmle ◽  
Constanze Bongs ◽  
Jeannette Wapler ◽  
Danny Günther ◽  
Stefan Hess ◽  
...  

2017 ◽  
Vol 170 (3) ◽  
pp. 103-115 ◽  
Author(s):  
Alexis Ali ◽  
Mostafa Mohamed ◽  
Mohamad Abdel-Aal ◽  
Alma Schellart ◽  
Simon Tait

Sign in / Sign up

Export Citation Format

Share Document