Investigation of aerodynamic forces and flow field of an H-type vertical axis wind turbine based on bionic airfoil

Energy ◽  
2021 ◽  
pp. 122999
Author(s):  
Yanfeng Zhang ◽  
Zhiping Guo ◽  
Xinyu Zhu ◽  
Yuan Li ◽  
Xiaowen Song ◽  
...  
Energy ◽  
2016 ◽  
Vol 111 ◽  
pp. 260-271 ◽  
Author(s):  
Qing'an Li ◽  
Takao Maeda ◽  
Yasunari Kamada ◽  
Junsuke Murata ◽  
Kazuma Furukawa ◽  
...  

2021 ◽  
Vol 11 (3) ◽  
pp. 1033
Author(s):  
Jia Guo ◽  
Timing Qu ◽  
Liping Lei

Pitch regulation plays a significant role in improving power performance and achieving output control in wind turbines. The present study focuses on a novel, pitch-regulated vertical axis wind turbine (VAWT) with inclined pitch axes. The effect of two pitch parameters (the fold angle and the incline angle) on the instantaneous aerodynamic forces and overall performance of a straight-bladed VAWT under a tip-speed ratio of 4 is investigated using an actuator line model, achieved in ANSYS Fluent software and validated by previous experimental results. The results demonstrate that the fold angle has an apparent influence on the angles of attack and forces of the blades, as well as the power output of the wind turbine. It is helpful to further study the dynamic pitch regulation and adaptable passive pitch regulation of VAWTs. Incline angles away from 90° lead to the asymmetric distribution of aerodynamic forces along the blade span, which results in an expected reduction of loads on the main shaft and the tower of VAWTs.


2014 ◽  
Vol 529 ◽  
pp. 296-302 ◽  
Author(s):  
Wei Zuo ◽  
Shun Kang

The aerodynamic performance and the bypass flow field of a vertical axis wind turbine under self-starting are investigated using CFD simulations in this paper. The influence of pitch angle variations on the performance of the wind turbine during self-starting is presented. A two-dimensional model of the wind turbine with three blades is employed. A commercial software FlowVision is employed in this paper, which uses dynamic Cartesian grid. The SST turbulence model is used for turbulence modeling, which assumes the flow full turbulent. Based on the comparison between the computed time-dependent variations of the rotation speed with the experimental data, the time-dependent variations of the torque are presented. The characteristics of self-starting of the wind turbine are analyzed with the pitch angle of 0o、-2oand 2o. The influence of pitch angle variations on two-dimensional unsteady viscous flow field through velocity contours is discussed in detail.


2012 ◽  
Vol 2012 (0) ◽  
pp. _S051024-1-_S051024-5
Author(s):  
Tatsuya SHODA ◽  
Yuko UEDA ◽  
Masaya SHIGETA ◽  
Seiichiro IZAWA ◽  
Yu FUKUNISHI

2015 ◽  
Vol 787 ◽  
pp. 245-249 ◽  
Author(s):  
Sivamani Seralathan ◽  
T. Micha Premkumar ◽  
S. Thangavel ◽  
G.P. Pradeep

NACA 0012 and NACA 4415 were discussed in Part 1 of the paper to study the capabilities of the airfoil blades by considering the effect of cambered airfoil blade on self-starting of vertical axis wind turbine. The numerical studies are carried out to identify self-starting capability of the airfoil using CFD analysis by studying the flow field over the vertical axis wind turbine blades. In this Part 2 paper, detailed numerical results of asymmetrical NACA 0018 and cambered airfoil NACA 63415 are presented. The lift force generated and the rotor torque induced varies with angle of attack. Based on the contours of static pressure and velocity distribution as well as based on the torque induced in the flow field over blade profiles, NACA 0018 is found to be better compared to cambered airfoil. Even though the lift force for cambered airfoils are higher, based on the rotor torque values, the wind turbine with asymmetrical airfoil blades NACA 0012 is better by 9.80% compared with NACA 4415 and 21.73% compared with NACA 63415. Self-starting issue can be addressed by proper selection of NACA blade profiles. By comparing the four airfoil blades in Part 1 and Part 2 of the papers, the asymmetrical NACA 0012 is found to be most suitable airfoil for self-starting the vertical axis wind turbine (VAWT).


2016 ◽  
Vol 57 (3) ◽  
Author(s):  
Kevin J. Ryan ◽  
Filippo Coletti ◽  
Christopher J. Elkins ◽  
John O. Dabiri ◽  
John K. Eaton

Author(s):  
Akiyoshi Iida ◽  
Akisato Mizuno ◽  
Kyoji Kamemoto

Unsteady flow field and flow induced noise of vertical axis wind turbine are numerically investigated. The flow field is numerically calculated by the vortex method with core-spreading model. This simulation obtains aerodynamic performance and aerodynamic forces. Aerodynamic noise is also simulated by using Ffowcs Williams-Hawkings equation with compact body and low-Mach number assumptions. Tip speed of rotor blades are not so high, then the contribution of the moving sound source is smaller than that of the dipole sound source. Since the maximum power coefficient of VAWT can be obtained at lower tip-speed ratio compared to the conventional, horizontal axis wind turbines, the aerodynamic noise from vertical axis wind turbine is smaller than that of the conventional wind turbines at the same aerodynamic performance. This result indicates that the vertical axis wind turbines are useful to develop low-noise wind turbines.


Author(s):  
R. Ricci ◽  
S. Montelpare ◽  
A. Secchiaroli ◽  
V. D’Alessandro

Sign in / Sign up

Export Citation Format

Share Document