Prediction of Aerodynamic Noise Radiated From a Vertical-Axis Wind Turbine

Author(s):  
Akiyoshi Iida ◽  
Akisato Mizuno ◽  
Kyoji Kamemoto

Unsteady flow field and flow induced noise of vertical axis wind turbine are numerically investigated. The flow field is numerically calculated by the vortex method with core-spreading model. This simulation obtains aerodynamic performance and aerodynamic forces. Aerodynamic noise is also simulated by using Ffowcs Williams-Hawkings equation with compact body and low-Mach number assumptions. Tip speed of rotor blades are not so high, then the contribution of the moving sound source is smaller than that of the dipole sound source. Since the maximum power coefficient of VAWT can be obtained at lower tip-speed ratio compared to the conventional, horizontal axis wind turbines, the aerodynamic noise from vertical axis wind turbine is smaller than that of the conventional wind turbines at the same aerodynamic performance. This result indicates that the vertical axis wind turbines are useful to develop low-noise wind turbines.

2021 ◽  
Author(s):  
Kabita Naik ◽  
Niranjan Sahoo

Abstract Nowadays, the vertical axis wind turbines (VAWTs) have gained significant attention among the small wind turbine (WT) due to their omnidirectional ability, low costs, low noise, and robustness, mainly for urban and off-shore applications. The H-rotor Darrieus is one of the class of VAWT that is mostly suitable for low-speed wind and low tip speed ratio (TSR) conditions. These VAWTs have relatively lesser performance than horizontal axis wind turbines (HAWTs). Therefore, to improve the performance of the H-rotor Darrieus VAWT, a dimple/cavity of different shapes is created into the surface of the blade airfoil as a power augmentation technique. The current study presents several two-dimensional numerical simulations on the H-rotor Darrieus VAWT in the turbulent flow. The performance of the VAWT has been examined through ANSYS Fluent solver with different turbulence models, and it is found that the Shear stress transport (SST) k–ω turbulence model shows better results. The study primarily focuses on the effect of the dimple location, diameter and shape to enhance the aerodynamic performance of the H-rotor Darrieus VAWT. It is found that the rotor performance is increased by about 13% with a quadral/rectangular dimple in comparison to without dimple. Further, with the inclusion of a dimple on the rotor blade airfoil, its performance is not only enhanced but also able to maintain it for a broad range of TSR. Thus, the present study suggests the implication of a dimple/cavity to be very promising in improving H-rotor Darrieus VAWT.


2021 ◽  
Author(s):  
Moshe Zilberman ◽  
Abdelaziz Abu Sbaih ◽  
Ibrahim Hadad

Abstract Wind energy has become an important resource for the growing demand for clean energy. In 2020 wind energy provided more than 6% of the global electricity demand. It is expected to reach 7% at the end of 2021. The installation growth rate of small wind turbines, though, is relatively slow. The reasons we are interested in the small vertical axis wind turbines are their low noise, environmentally friendly, low installation cost, and capable of being rooftop-mounted. The main goal of the present study is an optimization process towards achieving the optimal cost-effective vertical wind turbine. Thirty wind turbine models were tested under the same conditions in an Azrieli 30 × 30 × 90 cm low-speed wind tunnel at 107,000 Reynolds number. The different types of models were obtained by parametric variations of five basic models, maintaining the same aspect ratio but varying the number of bucket phases, the orientation angles, and the gaps between the vanes. The best performing turbine model was made of one phase with two vanes of non-symmetric bipolynomial profiles that exhibited 0.2 power coefficient, relative to 0.16 and 0.13 that were obtained for symmetrical polynomial and the original Savonius type turbines, respectively. Free rotation, static forces and moments, and dynamic moments and power were measured for the sake of comparison and explanation for the variations in performances of different types of turbines. CFD calculations were used to understand the forces and moment behaviors of the optimized turbine.


2014 ◽  
Vol 529 ◽  
pp. 296-302 ◽  
Author(s):  
Wei Zuo ◽  
Shun Kang

The aerodynamic performance and the bypass flow field of a vertical axis wind turbine under self-starting are investigated using CFD simulations in this paper. The influence of pitch angle variations on the performance of the wind turbine during self-starting is presented. A two-dimensional model of the wind turbine with three blades is employed. A commercial software FlowVision is employed in this paper, which uses dynamic Cartesian grid. The SST turbulence model is used for turbulence modeling, which assumes the flow full turbulent. Based on the comparison between the computed time-dependent variations of the rotation speed with the experimental data, the time-dependent variations of the torque are presented. The characteristics of self-starting of the wind turbine are analyzed with the pitch angle of 0o、-2oand 2o. The influence of pitch angle variations on two-dimensional unsteady viscous flow field through velocity contours is discussed in detail.


2013 ◽  
Vol 2013.62 (0) ◽  
pp. 257-258
Author(s):  
Toshiaki KAWABATA ◽  
Takao MAEDA ◽  
Yasunari KAMADA ◽  
Junsuke MURATA ◽  
Qing'an LI

Author(s):  
L. Battisti ◽  
L. Zanne ◽  
S. Dell’Anna ◽  
V. Dossena ◽  
B. Paradiso ◽  
...  

This paper presents the first results of a wide experimental investigation on the aerodynamics of a vertical axis wind turbine. Vertical axis wind turbines have recently received particular attention, as interesting alternative for small and micro generation applications. However, the complex fluid dynamic mechanisms occurring in these machines make the aerodynamic optimization of the rotors still an open issue and detailed experimental analyses are now highly recommended to convert improved flow field comprehensions into novel design techniques. The experiments were performed in the large-scale wind tunnel of the Politecnico di Milano (Italy), where real-scale wind turbines for micro generation can be tested in full similarity conditions. Open and closed wind tunnel configurations are considered in such a way to quantify the influence of model blockage for several operational conditions. Integral torque and thrust measurements, as well as detailed aerodynamic measurements were applied to characterize the 3D flow field downstream of the turbine. The local unsteady flow field and the streamwise turbulent component, both resolved in phase with the rotor position, were derived by hot wire measurements. The paper critically analyses the models and the correlations usually applied to correct the wind tunnel blockage effects. Results evidence that the presently available theoretical correction models does not provide accurate estimates of the blockage effect in the case of vertical axis wind turbines. The tip aerodynamic phenomena, in particular, seem to play a key role for the prediction of the turbine performance; large-scale unsteadiness is observed in that region and a simple flow model is used to explain the different flow features with respect to horizontal axis wind turbines.


2017 ◽  
Vol 64 (2) ◽  
pp. 205-218 ◽  
Author(s):  
Krzysztof Rogowski ◽  
Ryszard Maroński ◽  
Janusz Piechna

AbstractSmall-scale vertical-axis wind turbines can be used as a source of electricity in rural and urban environments. According to the authors’ knowledge, there are no validated simplified aerodynamic models of these wind turbines, therefore the use of more advanced techniques, such as for example the computational methods for fluid dynamics is justified. The paper contains performance analysis of the small-scale vertical-axis wind turbine with a large solidity. The averaged velocity field and the averaged static pressure distribution around the rotor have been also analyzed. All numerical results presented in this paper are obtained using the SST k-ω turbulence model. Computed power coeffcients are in good agreement with the experimental results. A small change in the tip speed ratio significantly affects the velocity field. Obtained velocity fields can be further used as a base for simplified aerodynamic methods.


2021 ◽  
pp. 1475472X2110551
Author(s):  
Aya Aihara ◽  
Karl Bolin ◽  
Anders Goude ◽  
Hans Bernhoff

This study investigates the numerical prediction for the aerodynamic noise of the vertical axis wind turbine using large eddy simulation and the acoustic analogy. Low noise designs are required especially in residential areas, and sound level generated by the wind turbine is therefore important to estimate. In this paper, the incompressible flow field around the 12 kW straight-bladed vertical axis wind turbine with the rotor diameter of 6.5 m is solved, and the sound propagation is calculated based on the Ffowcs Williams and Hawkings acoustic analogy. The sound pressure for the turbine operating at high tip speed ratio is predicted, and it is validated by comparing with measurement. The measured spectra of the sound pressure observed at several azimuth angles show the broadband characteristics, and the prediction is able to reproduce the shape of these spectra. While previous works studying small-scaled vertical axis wind turbines found that the thickness noise is the dominant sound source, the loading noise can be considered to be a main contribution to the total sound for this turbine. The simulation also indicates that the received noise level is higher when the blade moves in the downwind than in the upwind side.


2018 ◽  
Vol 841 ◽  
pp. 746-766 ◽  
Author(s):  
Abel-John Buchner ◽  
Julio Soria ◽  
Damon Honnery ◽  
Alexander J. Smits

Vertical axis wind turbine blades are subject to rapid, cyclical variations in angle of attack and relative airspeed which can induce dynamic stall. This phenomenon poses an obstacle to the greater implementation of vertical axis wind turbines because dynamic stall can reduce turbine efficiency and induce structural vibrations and noise. This study seeks to provide a more comprehensive description of dynamic stall in vertical axis wind turbines, with an emphasis on understanding its parametric dependence and scaling behaviour. This problem is of practical relevance to vertical axis wind turbine design but the inherent coupling of the pitching and velocity scales in the blade kinematics makes this problem of more broad fundamental interest as well. Experiments are performed using particle image velocimetry in the vicinity of the blades of a straight-bladed gyromill-type vertical axis wind turbine at blade Reynolds numbers of between 50 000 and 140 000, tip speed ratios between $\unicode[STIX]{x1D706}=1$ to $\unicode[STIX]{x1D706}=5$, and dimensionless pitch rates of $0.10\leqslant K_{c}\leqslant 0.20$. The effect of these factors on the evolution, strength and timing of vortex shedding from the turbine blades is determined. It is found that tip speed ratio alone is insufficient to describe the circulation production and vortex shedding behaviour from vertical axis wind turbine blades, and a scaling incorporating the dimensionless pitch rate is proposed.


Author(s):  
Nur Alom ◽  
Satish Chandra Kolaparthi ◽  
Sarath Chandra Gadde ◽  
Ujjwal K. Saha

Savonius-style wind turbine (SSWT), a class of vertical-axis wind turbine, appears to be promising for off-shore applications because of its design simplicity, good starting ability, insensitivity to wind direction, relatively low operating speed, low cost and easy installation. Various blade shapes have been used over the years to improve the performance of this class of turbine. In the recent past, an elliptic-bladed profile with sectional cut angle of 50° has shown its potential to harness the wind energy more efficiently. The present study aims to optimize this profile by numerical simulations. In view of this, the elliptical-bladed profiles are tested at different sectional cut angles of θ = 45°, 47.5°, 50° and 55°. The shear stress transport (SST) k-ω turbulence model is used to simulate the flow field, and thereafter, the torque and power coefficients are obtained at the rotating conditions. From 2D simulation, pressure and velocity contours are generated and analyzed. 2D simulations are also carried out for a semi-circular bladed profile in order to have a direct comparison. The numerical study demonstrates an improved flow characteristics, and hence the power coefficient of the elliptical-bladed profile at = 47.5°. Finally, 3D simulation is carried out to visualize and analyze the flow field around the optimum elliptical-bladed rotor at a tip speed ratio of 0.8. The aspect ratio of the rotor for the 3D simulation is kept at 0.7.


2013 ◽  
Vol 683 ◽  
pp. 653-656 ◽  
Author(s):  
Qiu Ping Yang ◽  
Roderick Galbraith ◽  
De Ke Xi

This paper use the Fluent software to calculate the flow field of the vertical axis wind turbine. The results got were almost agreeable with the experimental data. The results were much better agreeable with the experimental data when the TSR was larger than 1 .So it can be used as the fast and lower costing estimated tools for the vertical wind turbines.


Sign in / Sign up

Export Citation Format

Share Document