scholarly journals Self-powered Active Vibration Control: Concept, Modeling, and Testing

Engineering ◽  
2021 ◽  
Author(s):  
Jin-Yang Li ◽  
Songye Zhu
2010 ◽  
Vol 163-167 ◽  
pp. 2477-2481
Author(s):  
Na Xin Dai ◽  
Ping Tan ◽  
Fu Lin Zhou

To make the active and semi-active vibration control system in civil engineering get rid of external power supply, a new piezoelectric friction damper with self-power and sensing is designed in this paper and a semi-active control system based on this damper is presented. This system includes three key parts: a piezoelectric friction damper, a power generator based on the piezoelectric stack electro-mechanical energy conversion and a control circuit. It makes full use of the direct and converse piezoelectric effect. At the same time, it also overcomes the deficiency that the frictional force as damping can not be accurately desired in semi-active vibration control system. On the basis of it, the control equation of PFD is formulated. Numerical simulations for seismic protection of story isolation equipped with this system excited by a historical earthquake are conducted by MATLAB. Skyhook control is used to command a piezoelectric friction damper in the semi-active control. It is noticed that only one accelerometer is needed to monitor the response to realize the skyhook control, which greatly simplifies the classical semi-active vibration control system.


Author(s):  
Kimihiko Nakano ◽  
Yoshihiro Suda ◽  
Shigeyuki Nakadai

Abstract Active vibration control using regenerated vibration energy, i.e., self-powered active control, is proposed. In the self-powered active control system, vibration energy is regenerated by an electric generator, which is called an energy regenerative damper, and is stored in the condenser. An actuator achieves active vibration control using the energy stored in the condenser. The variable-value resistance whose value can be controlled by a computer is utilized to control output force of the actuator. The authors examine the performance of the self-powered active vibration control on experiments and propose to apply this system to cab suspensions of a heavy duty truck. Through experiments, it is shown that the self-powered active vibration control system has better isolation performance than a semi-active and a passive control system. Numerical simulations demonstrate better isolation performance of the self-powered active vibration control in cab suspensions of a heavy duty truck.


2000 ◽  
Vol 43 (3) ◽  
pp. 726-731 ◽  
Author(s):  
Kimihiko NAKANO ◽  
Yoshihiro SUDA ◽  
Shigeyuki NAKADAI

Author(s):  
Ulrich Werner

AbstractIn the paper, a theoretical analysis regarding foundation forces caused by dynamic air gap torques of converter-driven induction motors, influenced by active vibration control, is shown. Based on a plane model, where actuators are placed between the motor feet and steel frame foundation and where the vertical motor feet accelerations are controlled, a mathematical description in the time domain, Laplace domain, and Fourier domain is presented, as well as a block diagram for numerical simulation. A numerical example is shown, where a 2-pole induction motor (2 MW) is analyzed for different cases—motor directly mounted on a steel frame foundation (case 1), actuators between motor feet and foundation, operating passively (case 2) and actively (case 3). It could be shown, that with the presented active vibration control concept the foundation forces due to dynamic air gap torques can be clearly reduced.


1999 ◽  
Vol 11 (4) ◽  
pp. 310-314 ◽  
Author(s):  
Kimihiko Nakano ◽  
◽  
Yoshihiro Suda ◽  
Shigeyuki Nakadai ◽  

Active vibration control using regenerated vibration energy, i.e., self-powered active vibration control is proposed in which energy absorbed by a damper is stored in a condenser. An actuator produces control input using this stored energy. This requires no external energy. Energy used by the actuator is restricted to be less than energy regenerated. It is important to reduce energy consumption in the actuator. The control we developed requires less external energy than typical active control. A linear DC motor operating as an energy regenerative damper with high efficiency is used in experiments realizing self-powered active control and showing better isolation than passive control.


Author(s):  
Martin Weickgenannt ◽  
Oliver Sawodny ◽  
Stefan Neuhaeuser ◽  
Werner Sobek

The present contribution deals with concepts for active vibration control of a thin double-curved shell structure. The structure, Stuttgart SmartShell, is located at the University of Stuttgart. It is made of softwood and is equipped with strain gages to determine the state of static and dynamic loading. Furthermore a force input is provided at the supports of the structure using hydraulic cylinders. Here a model-based two-degree-of-freedom control concept for vibration damping is presented which is based on a dynamical model derived from Finite Element simulations. The control strategy uses modal decoupling of the system states to enable the manipulation and damping of single eigenmodes. An optimal control strategy is chosen to dampen oscillations as quickly as possible while considering limitations on the force input and peak stresses. The proposed control algorithms are applied to the shell structure under consideration and their applicability is demonstrated by simulation and experimental results.


Sign in / Sign up

Export Citation Format

Share Document