Self-Powered Active Vibration Control Using Regenerated Vibration Energy

1999 ◽  
Vol 11 (4) ◽  
pp. 310-314 ◽  
Author(s):  
Kimihiko Nakano ◽  
◽  
Yoshihiro Suda ◽  
Shigeyuki Nakadai ◽  

Active vibration control using regenerated vibration energy, i.e., self-powered active vibration control is proposed in which energy absorbed by a damper is stored in a condenser. An actuator produces control input using this stored energy. This requires no external energy. Energy used by the actuator is restricted to be less than energy regenerated. It is important to reduce energy consumption in the actuator. The control we developed requires less external energy than typical active control. A linear DC motor operating as an energy regenerative damper with high efficiency is used in experiments realizing self-powered active control and showing better isolation than passive control.

2010 ◽  
Vol 163-167 ◽  
pp. 2477-2481
Author(s):  
Na Xin Dai ◽  
Ping Tan ◽  
Fu Lin Zhou

To make the active and semi-active vibration control system in civil engineering get rid of external power supply, a new piezoelectric friction damper with self-power and sensing is designed in this paper and a semi-active control system based on this damper is presented. This system includes three key parts: a piezoelectric friction damper, a power generator based on the piezoelectric stack electro-mechanical energy conversion and a control circuit. It makes full use of the direct and converse piezoelectric effect. At the same time, it also overcomes the deficiency that the frictional force as damping can not be accurately desired in semi-active vibration control system. On the basis of it, the control equation of PFD is formulated. Numerical simulations for seismic protection of story isolation equipped with this system excited by a historical earthquake are conducted by MATLAB. Skyhook control is used to command a piezoelectric friction damper in the semi-active control. It is noticed that only one accelerometer is needed to monitor the response to realize the skyhook control, which greatly simplifies the classical semi-active vibration control system.


Author(s):  
Kimihiko Nakano ◽  
Yoshihiro Suda ◽  
Shigeyuki Nakadai

Abstract Active vibration control using regenerated vibration energy, i.e., self-powered active control, is proposed. In the self-powered active control system, vibration energy is regenerated by an electric generator, which is called an energy regenerative damper, and is stored in the condenser. An actuator achieves active vibration control using the energy stored in the condenser. The variable-value resistance whose value can be controlled by a computer is utilized to control output force of the actuator. The authors examine the performance of the self-powered active vibration control on experiments and propose to apply this system to cab suspensions of a heavy duty truck. Through experiments, it is shown that the self-powered active vibration control system has better isolation performance than a semi-active and a passive control system. Numerical simulations demonstrate better isolation performance of the self-powered active vibration control in cab suspensions of a heavy duty truck.


2000 ◽  
Vol 43 (3) ◽  
pp. 726-731 ◽  
Author(s):  
Kimihiko NAKANO ◽  
Yoshihiro SUDA ◽  
Shigeyuki NAKADAI

Author(s):  
Young-Tai Choi ◽  
Norman M. Wereley ◽  
Gregory J. Hiemenz

Novel semi-active vibration controllers are developed in this study for magnetorheological (MR) fluid-based vibration control systems, including: (1) a band-pass frequency shaped semi-active control algorithm, (2) a narrow-band frequency shaped semi-active control algorithm. These semi-active vibration control algorithms designed without resorting to the implementation of an active vibration control algorithms upon which is superposed the energy dissipation constraint. These new Frequency Shaped Semi-active Control (FSSC) algorithms require neither an accurate damper (or actuator) model, nor system identification of damper model parameters for determining control current input. In the design procedure for the FSSC algorithms, the semi-active MR damper is not treated as an active force producing actuator, but rather is treated in the design process as a semi-active dissipative device. The control signal from the FSSC algorithms is a control current, and not a control force as is typically done for active controllers. In this study, two FSSC algorithms are formulated and performance of each is assessed via simulation. Performance of the FSSC vibration controllers is evaluated using a single-degree-of-freedom (DOF) MR fluid-based engine mount system. To better understand the control characteristics and advantages of the two FSSC algorithms, the vibration mitigation performance of a semi-active skyhook control algorithm, which is the classical semi-active controller used in base excitation problems, is compared to the two FSSC algorithms.


2013 ◽  
Vol 744 ◽  
pp. 528-531
Author(s):  
Feng Xing ◽  
Jian Guo Cao ◽  
Jing Wang ◽  
Chang Yong Deng

This paper analyses the active vibration control technology on the piezoelectric ceramics car-body pieces in fuzzy control Strategy. Adaptive controllers, based on fuzzy logics, are synthesized for the control of vibration of body structure. Piezoelectric element, control system and body structure have been combined to be a intelligent response system to external drive and it’s own vibration. This system can effect reducing body structure’s reaction from environmental load with external energy. The availability of the control strategy has been confirmed by experiments.


Author(s):  
Keigo Nakamura ◽  
Nanako Miura ◽  
Akira Sone

In this research, the focus is on the energy problem in active vibration control of a seismic isolation device using self-powered active control that regenerates electric power from kinetic energy of vibration system and uses it as control power. In recent years, it is proposed to install semi-active control or active control in an isolated structure to deal with seismic waves of various periods. However, since energy is required for control, there is a problem that the desired response reduction performance cannot be achieved when energy supply is interrupted at the time of a power outage. In our previous device, power is always given to the motor to control, thus power consumption is high. Therefore, the purpose of this research is to propose input method of control force that can reduce control power while keeping base isolation performance by classifying the role of the control force for each control phase and considering various combinations of input control force.


2017 ◽  
Vol 28 (18) ◽  
pp. 2603-2616 ◽  
Author(s):  
Asif Khan ◽  
Hyun Sung Lee ◽  
Heung Soo Kim

In this article, the effect of a sensor-debonding failure on the active vibration control of a smart composite plate is investigated numerically. A mathematical model of the smart structure with a partially debonded piezoelectric sensor is developed using an improved layerwise theory, a higher-order electric-potential field that serves as the displacement field, and the potential variation through the piezoelectric patches. A state-space form that is based on the reduced-order model is employed for the controller design. A control strategy with a constant gain and velocity feedback is used to assess the vibration-control characteristics of the controller in the presence of the sensor-debonding failure. The obtained results show that sensor-debonding failure reduces the sensor-output, control-input signal, and active damping in magnitude that successively degrades the vibration attenuation capability of the active vibration controller. The settling time and relative tip displacement of the controlled structure increase with the increasing length of partial debonding between the piezoelectric sensor and host structure. Furthermore, a damage-sensitive feature along with multidimensional scaling showed excellent results for the detection and quantification of sensor-debonding failure in the active vibration control of smart structures.


Sign in / Sign up

Export Citation Format

Share Document