scholarly journals MEC-empowered non-terrestrial network for 6G wide-area time-sensitive internet of things

Engineering ◽  
2021 ◽  
Author(s):  
Chengxiao Liu ◽  
Wei Feng ◽  
Xiaoming Tao ◽  
Ning Ge
Technologies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 22
Author(s):  
Eljona Zanaj ◽  
Giuseppe Caso ◽  
Luca De Nardis ◽  
Alireza Mohammadpour ◽  
Özgü Alay ◽  
...  

In the last years, the Internet of Things (IoT) has emerged as a key application context in the design and evolution of technologies in the transition toward a 5G ecosystem. More and more IoT technologies have entered the market and represent important enablers in the deployment of networks of interconnected devices. As network and spatial device densities grow, energy efficiency and consumption are becoming an important aspect in analyzing the performance and suitability of different technologies. In this framework, this survey presents an extensive review of IoT technologies, including both Low-Power Short-Area Networks (LPSANs) and Low-Power Wide-Area Networks (LPWANs), from the perspective of energy efficiency and power consumption. Existing consumption models and energy efficiency mechanisms are categorized, analyzed and discussed, in order to highlight the main trends proposed in literature and standards toward achieving energy-efficient IoT networks. Current limitations and open challenges are also discussed, aiming at highlighting new possible research directions.


2019 ◽  
Vol 11 (3) ◽  
pp. 57 ◽  
Author(s):  
Lorenzo Vangelista ◽  
Marco Centenaro

The low-power wide-area network (LPWAN) paradigm is gradually gaining market acceptance. In particular, three prominent LPWAN technologies are emerging at the moment: LoRaWAN™ and SigFox™, which operate on unlicensed frequency bands, and NB-IoT, operating on licensed frequency bands. This paper deals with LoRaWAN™, and has the aim of describing a particularly interesting feature provided by the latest LoRaWAN™ specification—often neglected in the literature—i.e., the roaming capability between different operators of LoRaWAN™ networks, across the same country or even different countries. Recalling that LoRaWAN™ devices do not have a subscriber identification module (SIM) like cellular network terminals, at a first glance the implementation of roaming in LoRaWAN™ networks could seem intricate. The contribution of this paper consists in explaining the principles behind the implementation of a global LoRaWAN network, with particular focus on how to cope with the lack of the SIM in the architecture and how to realize roaming.


Author(s):  
Sudhir K. Routray

Internet of things (IoT) is an integral part of modern digital ecosystem. It is available in different forms. Narrowband IoT (NBIoT) is one of the special forms of the IoTs available for deployment. It is popular due to its low power wide area (LPWA) characteristics. For new initiatives such as smart grids and smart cities, a large number of sensors will be deployed and the demand for power is expected to be high for such IoT deployments. NBIoT has the potential to reduce the power and bandwidth required for large IoT projects. In this chapter, different practical aspects of NBIoT deployment have been addressed. The LPWA features of NBIoT can be realized effectively if and only if its deployment is done properly. Due to its large demand, it has been standardized in a very short span of time. However, the 5G deployment of NBIoT will have some new provisions.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4375 ◽  
Author(s):  
Yuxuan Wang ◽  
Jun Yang ◽  
Xiye Guo ◽  
Zhi Qu

As one of the information industry’s future development directions, the Internet of Things (IoT) has been widely used. In order to reduce the pressure on the network caused by the long distance between the processing platform and the terminal, edge computing provides a new paradigm for IoT applications. In many scenarios, the IoT devices are distributed in remote areas or extreme terrain and cannot be accessed directly through the terrestrial network, and data transmission can only be achieved via satellite. However, traditional satellites are highly customized, and on-board resources are designed for specific applications rather than universal computing. Therefore, we propose to transform the traditional satellite into a space edge computing node. It can dynamically load software in orbit, flexibly share on-board resources, and provide services coordinated with the cloud. The corresponding hardware structure and software architecture of the satellite is presented. Through the modeling analysis and simulation experiments of the application scenarios, the results show that the space edge computing system takes less time and consumes less energy than the traditional satellite constellation. The quality of service is mainly related to the number of satellites, satellite performance, and task offloading strategy.


Sign in / Sign up

Export Citation Format

Share Document