The influence of different pre-formed holes on the dynamic response of square plates under air-blast loading

2017 ◽  
Vol 78 ◽  
pp. 122-133 ◽  
Author(s):  
Ying Li ◽  
Weiguo Wu ◽  
Haiqing Zhu ◽  
Zhen Wu ◽  
Zhipeng Du
2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Chang Qi ◽  
Shu Yang ◽  
Li-Jun Yang ◽  
Shou-Hong Han ◽  
Zhen-Hua Lu

It is important to understand the effect of curvature on the blast response of curved structures so as to seek the optimal configurations of such structures with improved blast resistance. In this study, the dynamic response and protective performance of a type of curved metallic sandwich panel subjected to air blast loading were examined using LS-DYNA. The numerical methods were validated using experimental data in the literature. The curved panel consisted of an aluminum alloy outer face and a rolled homogeneous armour (RHA) steel inner face in addition to a closed-cell aluminum foam core. The results showed that the configuration of a “soft” outer face and a “hard” inner face worked well for the curved sandwich panel against air blast loading in terms of maximum deflection (MaxD) and energy absorption. The panel curvature was found to have a monotonic effect on the specific energy absorption (SEA) and a nonmonotonic effect on the MaxD of the panel. Based on artificial neural network (ANN) metamodels, multiobjective optimization designs of the panel were carried out. The optimization results revealed the trade-off relationships between the blast-resistant and the lightweight objectives and showed the great use of Pareto front in such design circumstances.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Pan Zhang ◽  
Yuansheng Cheng ◽  
Jun Liu

Three-dimensional fully coupled simulation is conducted to analyze the dynamic response of sandwich panels comprising equal thicknesses face sheets sandwiching a corrugated core when subjected to localized impulse created by the detonation of cylindrical explosive. A large number of computational cases have been calculated to comprehensively investigate the performance of sandwich panels under near-field air blast loading. Results show that the deformation/failure modes of panels depend strongly on stand-off distance. The beneficial FSI effect can be enhanced by decreasing the thickness of front face sheet. The core configuration has a negligible influence on the peak reflected pressure, but it has an effect on the deflection of a panel. It is found that the benefits of a sandwich panel over an equivalent weight solid plate to withstand near-field air blast loading are more evident at lower stand-off distance.


2012 ◽  
Vol 19 (6) ◽  
pp. 1235-1255 ◽  
Author(s):  
Sedat Susler ◽  
Halit S. Turkmen ◽  
Zafer Kazancı

In this study, the geometrically nonlinear dynamic behaviour of simply supported tapered laminated composite plates subjected to the air blast loading is investigated numerically. In-plane stiffness, inertia and the geometric nonlinearity effects are considered in the formulation of the problem. The equations of motion for the tapered laminated plate are derived by the use of the virtual work principle. Approximate solution functions are assumed for the space domain and substituted into the equations of motion. Then, the Galerkin method is used to obtain the nonlinear algebraic differential equations in the time domain. The resulting equations are solved by using the finite difference approximation over the time. The effects of the taper ratio, the stacking sequence and the fiber orientation angle on the dynamic response are investigated. The displacement-time and strain-time histories are obtained on certain points in the tapered direction. The results obtained by using the present method are compared with the ones obtained by using a commercial finite element software ANSYS. The results are found to be in an agreement. The method presented here is able to determine the nonlinear dynamic response of simply supported tapered laminated plates to the air blast loading accurately.


2015 ◽  
Vol 65 ◽  
pp. 221-230 ◽  
Author(s):  
Pan Zhang ◽  
Jun Liu ◽  
Yuansheng Cheng ◽  
Hailiang Hou ◽  
Chunming Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document