A Modified Rule for Estimating Notch Root Strains in Ball Defects Existing in Coiled Tubing

Author(s):  
Joanne Ishak ◽  
Elie A. Badr
Keyword(s):  
2007 ◽  
Author(s):  
Jennifer Yvonne Julian ◽  
Kirk Charles Forcade ◽  
Taylor L. West ◽  
Kevin yeager ◽  
Robert Lee Mielke ◽  
...  

2016 ◽  
Author(s):  
Ali Al-Ghaithi ◽  
Fahad Alawi ◽  
Ernest Sayapov ◽  
Ehab Ibrahim ◽  
Najet Aouchar ◽  
...  

Author(s):  
A.V. Matsko ◽  
◽  
V.T. Lukyanov ◽  
V.Yu. Bliznyukov ◽  
Keyword(s):  

2020 ◽  
Author(s):  
Diego A. Fernandez C ◽  
Ernesto Franco D. ◽  
Carlos Villagrana P. ◽  
Angel Machado

2011 ◽  
Vol 462-463 ◽  
pp. 663-667 ◽  
Author(s):  
Ruslizam Daud ◽  
Ahmad Kamal Ariffin ◽  
Shahrum Abdullah ◽  
Al Emran Ismail

This paper explores the initial potential of theory of critical distance (TCD) which offers essential fatigue failure prediction in engineering components. The intention is to find the most appropriate TCD approach for a case of multiple stress concentration features in future research. The TCD is based on critical distance from notch root and represents the extension of linear elastic fracture mechanics (LEFM) principles. The approach is allowing possibilities for fatigue limit prediction based on localized stress concentration, which are characterized by high stress gradients. Using the finite element analysis (FEA) results and some data from literature, TCD applications is illustrated by a case study on engineering components in different geometrical notch radius. Further applications of TCD to various kinds of engineering problems are discussed.


Sign in / Sign up

Export Citation Format

Share Document