The quantitative relationship between fracture toughness and impact toughness in high-strength steels

2019 ◽  
Vol 211 ◽  
pp. 362-370 ◽  
Author(s):  
H.F. Li ◽  
Q.Q. Duan ◽  
P. Zhang ◽  
X.H. Zhou ◽  
B. Wang ◽  
...  
Alloy Digest ◽  
2012 ◽  
Vol 61 (2) ◽  

Abstract RUUKKI RAEX 300 (typical yield strength 900 MPa) is part of the Raex family of high-strength and wear-resistant steels with favorable hardness and impact toughness to extend life and decrease wear in structural components. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fracture toughness. It also includes information on wear resistance as well as forming, machining, and joining. Filing Code: SA-643. Producer or source: Rautaruukki Corporation.


Alloy Digest ◽  
2003 ◽  
Vol 52 (8) ◽  

Abstract Bethlehem Lukens Plate (BLP) offers five grades of Spartan high-strength steels with tensile yield strength over 690 MPa (100 ksi). These alloys contain copper for precipitation reactions. They also have improved weldability and toughness compared to ASTM A 514 and A 543 grades. This datasheet provides information on composition, microstructure, hardness, and tensile properties as well as fracture toughness. It also includes information on forming and joining. Filing Code: SA-518. Producer or source: Bethlehem Lukens Plate.


2019 ◽  
Vol 205 ◽  
pp. 319-332 ◽  
Author(s):  
D. Frómeta ◽  
A. Lara ◽  
S. Molas ◽  
D. Casellas ◽  
J. Rehrl ◽  
...  

1992 ◽  
Vol 36 ◽  
pp. 543-549
Author(s):  
Masaaki Tsuda ◽  
Yukio Hirose ◽  
Zenjiro Yajima ◽  
Keisuke Tanaka

X-ray fractography is a new method utilizing the X-ray diffraction technique to observe the fracture surface for the analysis of the micromechanisms and mechanics of fracture. X-ray residual stress has been confirmed to be a particularly useful parameter when studying the fracture surfaces of high strength steels. The method has been applied to the fracture surface of fracture toughness and fatigue specimens.


1989 ◽  
Vol 33 ◽  
pp. 327-334 ◽  
Author(s):  
Masaaki Tsuda ◽  
Yukic Hirose ◽  
Zenjiro Yajima ◽  
Keisuke Tanaka

X-ray fractography is a new method utilizing the X-ray diffraction technique to observe the fracture surface for the analysis of the micromechanisms and mechanics of fracture. The X-ray residual stress has been confirmed to be a particularly useful parameter when studying the fracture surfaces of high strength steels. The method has been applied to the fracture surface of fracture toughness and fatigue specimens.


1990 ◽  
Vol 34 ◽  
pp. 719-727 ◽  
Author(s):  
Sumio Tanaka ◽  
Yukio Hirose ◽  
Keisuke Tanaka

The residual stress left on the fracture surface is one of the important parameters in X-ray fractographic study. It has been used to analyze fracture mechanisms in fracture toughness and fatigue tests especially of high strength steels.In this paper, X-ray fractography was applied to brittle fracture of alumina (Al2O3) and zirconia (ZΓO2) ceramics.


2012 ◽  
Vol 706-709 ◽  
pp. 2084-2089
Author(s):  
Andrea di Schino ◽  
Mauro Guagnelli

The proper balance between yield strength, YS, and ductile to brittle transition temperature, DBTT, has been the main concern during development of high strength engineering steels and the effect of microstructure on impact toughness has attracted a great attention during the last decades. In this paper a review concerning the relationship between strength and toughness in steels will be presented and the effect of different microstructural parameters will be discussed, aiming toimprovesuch properties in designingnewhigh strength steels. Complex microstructures, obtained by quenching and tempering (Q&T) and thermo-mechanical (TM) processing are considered. The steels are low/medium carbon steels (C=0.04%-0.40%) with yield strength in the range YS=500-1000 MPa. Results show that the strength and the impact toughness behaviour are controlled by different microstructural parameters and not, as in the case of polygonal ferritic steels, by the same structural unit (the grain size) and that a “fine” microstructure is required in order to achieve high levels of both strength and toughness. The metallurgical design of high strength steels with toughness requirements is discussed using the same approach for both Q&T and TMCP processes.


Sign in / Sign up

Export Citation Format

Share Document