Elastic Field for a Blunt Crack Represented by a Parabolic Cavity in a Generally Anisotropic Elastic Material

Author(s):  
Xu Wang ◽  
Peter Schiavone
Author(s):  
T. T. C. Ting

The relations between stresses and strains in an anisotropic elastic material are presented in this chapter. A linear anisotropic elastic material can have as many as 21 elastic constants. This number is reduced when the material possesses a certain material symmetry. The number of elastic constants is also reduced, in most cases, when a two-dimensional deformation is considered. An important condition on elastic constants is that the strain energy must be positive. This condition implies that the 6×6 matrices of elastic constants presented herein must be positive definite. Referring to a fixed rectangular coordinate system x1, x2, x3, let σij and εks be the stress and strain, respectively, in an anisotropic elastic material. The stress-strain law can be written as . . . σij = Cijksεks . . . . . .(2.1-1). . . in which Cijks are the elastic stiffnesses which are components of a fourth rank tensor. They satisfy the full symmetry conditions . . . Cijks = Cjiks, Cijks = Cijsk, Cijks = Cksij. . . . . . .(2.1-2). . .


2020 ◽  
Vol 73 (1) ◽  
pp. 76-83
Author(s):  
Xu Wang ◽  
Peter Schiavone

Summary We use the sextic Stroh formalism to study the asymptotic elastic field near the tip of a debonded anticrack in a generally anisotropic elastic material under generalised plane strain deformations. The stresses near the tip of the debonded anticrack exhibit the oscillatory singularities $r^{-3/4\pm i\varepsilon }$ and $r^{-1/4\pm i\varepsilon }$ (where $\varepsilon $ is the oscillatory index) as well as the real power-type singularities $r^{-3/4}$ and $r^{-1/4}$. Two complex-valued stress intensity factors and two real-valued stress intensity factors are introduced to respectively scale the two oscillatory and two real power-type singularities. The corresponding three-dimensional analytic vector function is derived explicitly, and the material force on the debonded anticrack is obtained. Our solution is illustrated using an example involving orthotropic materials.


Sign in / Sign up

Export Citation Format

Share Document