scholarly journals Dynamic Data Driven Experiment Control Coordinated with Anisotropic Elastic Material Characterization

2011 ◽  
Vol 5 (4) ◽  
pp. 623-644
Author(s):  
John G. Michopoulos ◽  
Tomonari Furukawa ◽  
John C. Hermanson ◽  
Samuel G. Lambrakos
Author(s):  
T. T. C. Ting

The relations between stresses and strains in an anisotropic elastic material are presented in this chapter. A linear anisotropic elastic material can have as many as 21 elastic constants. This number is reduced when the material possesses a certain material symmetry. The number of elastic constants is also reduced, in most cases, when a two-dimensional deformation is considered. An important condition on elastic constants is that the strain energy must be positive. This condition implies that the 6×6 matrices of elastic constants presented herein must be positive definite. Referring to a fixed rectangular coordinate system x1, x2, x3, let σij and εks be the stress and strain, respectively, in an anisotropic elastic material. The stress-strain law can be written as . . . σij = Cijksεks . . . . . .(2.1-1). . . in which Cijks are the elastic stiffnesses which are components of a fourth rank tensor. They satisfy the full symmetry conditions . . . Cijks = Cjiks, Cijks = Cijsk, Cijks = Cksij. . . . . . .(2.1-2). . .


2020 ◽  
Vol 73 (1) ◽  
pp. 76-83
Author(s):  
Xu Wang ◽  
Peter Schiavone

Summary We use the sextic Stroh formalism to study the asymptotic elastic field near the tip of a debonded anticrack in a generally anisotropic elastic material under generalised plane strain deformations. The stresses near the tip of the debonded anticrack exhibit the oscillatory singularities $r^{-3/4\pm i\varepsilon }$ and $r^{-1/4\pm i\varepsilon }$ (where $\varepsilon $ is the oscillatory index) as well as the real power-type singularities $r^{-3/4}$ and $r^{-1/4}$. Two complex-valued stress intensity factors and two real-valued stress intensity factors are introduced to respectively scale the two oscillatory and two real power-type singularities. The corresponding three-dimensional analytic vector function is derived explicitly, and the material force on the debonded anticrack is obtained. Our solution is illustrated using an example involving orthotropic materials.


2020 ◽  
pp. 108128652094960
Author(s):  
Xiaoyi Chen ◽  
Hui-Hui Dai ◽  
Erick Pruchnicki

An asymptotic reduction method is introduced to construct a rod theory for a linearized general anisotropic elastic material for space deformation. The starting point is Taylor expansions about the central line in rectangular coordinates, and the goal is to eliminate the two cross-section spatial variables in order to obtain a closed system for displacement coefficients. This is first achieved, in an ‘asymptotically inconsistent’ way, by deducing the relations between stress coefficients from a Fourier series for the lateral traction condition and the three-dimensional (3D) field equation in a pointwise manner. The closed system consists of 10 vector unknowns, and further refinements through elaborated calculations are performed to extract bending and torsion terms and to obtain recursive relations for the first- and second-order displacement coefficients. Eventually, a system of four asymptotically consistent rod equations for four unknowns (the three components of the central-line displacement and the twist angle) are obtained. Six physically meaningful boundary conditions at each edge are obtained from the edge term in the 3D virtual work principle, and a one-dimensional rod virtual work principle is also deduced from the weak forms of the rod equations.


Sign in / Sign up

Export Citation Format

Share Document