scholarly journals Design and implementation of a landslide early warning system

2012 ◽  
Vol 147-148 ◽  
pp. 124-136 ◽  
Author(s):  
Emanuele Intrieri ◽  
Giovanni Gigli ◽  
Francesco Mugnai ◽  
Riccardo Fanti ◽  
Nicola Casagli
2019 ◽  
Vol 3 (2) ◽  
pp. 88
Author(s):  
Riski Fitriani

Salah satu inovasi untuk menanggulangi longsor adalah dengan melakukan pemasangan Landslide Early Warning System (LEWS). Media transmisi data dari LEWS yang dikembangkan menggunakan sinyal radio Xbee. Sehingga sebelum dilakukan pemasangan LEWS, perlu dilakukan kajian kekuatan sinyal tersebut di lokasi yang akan terpasang yaitu Garut, Tasikmalaya, dan Majalengka. Kajian dilakukan menggunakan 2 jenis Xbee yaitu Xbee Pro S2B 2,4 GHz dan Xbee Pro S5 868 MHz. Setelah dilakukan kajian, Xbee 2,4 GHz tidak dapat digunakan di lokasi pengujian Garut dan Majalengka karena jarak modul induk dan anak cukup jauh serta terlalu banyak obstacle. Topologi yang digunakan yaitu topologi pair/point to point, dengan mengukur nilai RSSI menggunakan software XCTU. Semakin kecil nilai Received Signal Strength Indicator (RSSI) dari nilai receive sensitivity Xbee maka kualitas sinyal semakin baik. Pengukuran dilakukan dengan meninggikan antena Xbee dengan beberapa variasi ketinggian untuk mendapatkan kualitas sinyal yang lebih baik. Hasilnya diperoleh beberapa rekomendasi tinggi minimal antena Xbee yang terpasang di tiap lokasi modul anak pada 3 kabupaten.


2013 ◽  
Vol 13 (1) ◽  
pp. 85-90 ◽  
Author(s):  
E. Intrieri ◽  
G. Gigli ◽  
N. Casagli ◽  
F. Nadim

Abstract. We define landslide Early Warning Systems and present practical guidelines to assist end-users with limited experience in the design of landslide Early Warning Systems (EWSs). In particular, two flow chart-based tools coming from the results of the SafeLand project (7th Framework Program) have been created to make them as simple and general as possible and in compliance with a variety of landslide types and settings at single slope scale. We point out that it is not possible to cover all the real landslide early warning situations that might occur, therefore it will be necessary for end-users to adapt the procedure to local peculiarities of the locations where the landslide EWS will be operated.


2010 ◽  
Vol 10 (11) ◽  
pp. 2215-2228 ◽  
Author(s):  
M. Angermann ◽  
M. Guenther ◽  
K. Wendlandt

Abstract. This article discusses aspects of communication architecture for early warning systems (EWS) in general and gives details of the specific communication architecture of an early warning system against tsunamis. While its sensors are the "eyes and ears" of a warning system and enable the system to sense physical effects, its communication links and terminals are its "nerves and mouth" which transport measurements and estimates within the system and eventually warnings towards the affected population. Designing the communication architecture of an EWS against tsunamis is particularly challenging. Its sensors are typically very heterogeneous and spread several thousand kilometers apart. They are often located in remote areas and belong to different organizations. Similarly, the geographic spread of the potentially affected population is wide. Moreover, a failure to deliver a warning has fatal consequences. Yet, the communication infrastructure is likely to be affected by the disaster itself. Based on an analysis of the criticality, vulnerability and availability of communication means, we describe the design and implementation of a communication system that employs both terrestrial and satellite communication links. We believe that many of the issues we encountered during our work in the GITEWS project (German Indonesian Tsunami Early Warning System, Rudloff et al., 2009) on the design and implementation communication architecture are also relevant for other types of warning systems. With this article, we intend to share our insights and lessons learned.


Landslides ◽  
2018 ◽  
Vol 15 (8) ◽  
pp. 1631-1644 ◽  
Author(s):  
N. Dixon ◽  
A. Smith ◽  
J. A. Flint ◽  
R. Khanna ◽  
B. Clark ◽  
...  

Author(s):  
Marrion Namono ◽  
Isaac Mugume ◽  
Radu Negru ◽  
Godfrey Mujuni ◽  
Tao Sulin ◽  
...  

Landslides are natural disasters that normally cause misery over the Mount Elgon region, especially in Bududa district. A landslide early warning system was developed in collaboration with the community and this study investigated it’s effectiveness in disseminating warnings to the community. The data were collected from 82 respondents (mean age 43) and 4 focus group discussions (one per village). Majority of the respondents lost crops (35.9%); land (29.8%); lives and livestock (6.9%). The frequent occurrence of landslides is due to the changes in landuse patterns; settlement on steep slopes; and prolonged rainfall of low intensities. The study found that, 93.2% of respondents have ever received the warnings and alerts. 78.8% of those who received the warnings evacuated. The use of radios to disseminate warnings is the most efficient communication channel (44.4%) followed by using the clan members (19.5%). Only 40% of the women received the early warning through radios, an indicator that this channel puts women at a disadvantage. The main challenges regarding utilization of early warning system were: poor timing (29.9%); poor coordination (20.7%); and poor sensitization (18.4%). There is need to strengthen the community networks, and with continuous sensitization, the effectiveness of the landslides early warning will improve and this is expected to enhance the resilience of the community to landslides.


Sign in / Sign up

Export Citation Format

Share Document