KAJIAN KEKUATAN SINYAL RADIO (RSSI) XBEE DALAM RANGKA PEMASANGAN LANDSLIDE EARLY WARNING SYSTEM (LEWS) DI KABUPATEN GARUT, TASIKMALAYA DAN MAJALENGKA

2019 ◽  
Vol 3 (2) ◽  
pp. 88
Author(s):  
Riski Fitriani

Salah satu inovasi untuk menanggulangi longsor adalah dengan melakukan pemasangan Landslide Early Warning System (LEWS). Media transmisi data dari LEWS yang dikembangkan menggunakan sinyal radio Xbee. Sehingga sebelum dilakukan pemasangan LEWS, perlu dilakukan kajian kekuatan sinyal tersebut di lokasi yang akan terpasang yaitu Garut, Tasikmalaya, dan Majalengka. Kajian dilakukan menggunakan 2 jenis Xbee yaitu Xbee Pro S2B 2,4 GHz dan Xbee Pro S5 868 MHz. Setelah dilakukan kajian, Xbee 2,4 GHz tidak dapat digunakan di lokasi pengujian Garut dan Majalengka karena jarak modul induk dan anak cukup jauh serta terlalu banyak obstacle. Topologi yang digunakan yaitu topologi pair/point to point, dengan mengukur nilai RSSI menggunakan software XCTU. Semakin kecil nilai Received Signal Strength Indicator (RSSI) dari nilai receive sensitivity Xbee maka kualitas sinyal semakin baik. Pengukuran dilakukan dengan meninggikan antena Xbee dengan beberapa variasi ketinggian untuk mendapatkan kualitas sinyal yang lebih baik. Hasilnya diperoleh beberapa rekomendasi tinggi minimal antena Xbee yang terpasang di tiap lokasi modul anak pada 3 kabupaten.

2013 ◽  
Vol 13 (1) ◽  
pp. 85-90 ◽  
Author(s):  
E. Intrieri ◽  
G. Gigli ◽  
N. Casagli ◽  
F. Nadim

Abstract. We define landslide Early Warning Systems and present practical guidelines to assist end-users with limited experience in the design of landslide Early Warning Systems (EWSs). In particular, two flow chart-based tools coming from the results of the SafeLand project (7th Framework Program) have been created to make them as simple and general as possible and in compliance with a variety of landslide types and settings at single slope scale. We point out that it is not possible to cover all the real landslide early warning situations that might occur, therefore it will be necessary for end-users to adapt the procedure to local peculiarities of the locations where the landslide EWS will be operated.


Landslides ◽  
2018 ◽  
Vol 15 (8) ◽  
pp. 1631-1644 ◽  
Author(s):  
N. Dixon ◽  
A. Smith ◽  
J. A. Flint ◽  
R. Khanna ◽  
B. Clark ◽  
...  

Author(s):  
Marrion Namono ◽  
Isaac Mugume ◽  
Radu Negru ◽  
Godfrey Mujuni ◽  
Tao Sulin ◽  
...  

Landslides are natural disasters that normally cause misery over the Mount Elgon region, especially in Bududa district. A landslide early warning system was developed in collaboration with the community and this study investigated it’s effectiveness in disseminating warnings to the community. The data were collected from 82 respondents (mean age 43) and 4 focus group discussions (one per village). Majority of the respondents lost crops (35.9%); land (29.8%); lives and livestock (6.9%). The frequent occurrence of landslides is due to the changes in landuse patterns; settlement on steep slopes; and prolonged rainfall of low intensities. The study found that, 93.2% of respondents have ever received the warnings and alerts. 78.8% of those who received the warnings evacuated. The use of radios to disseminate warnings is the most efficient communication channel (44.4%) followed by using the clan members (19.5%). Only 40% of the women received the early warning through radios, an indicator that this channel puts women at a disadvantage. The main challenges regarding utilization of early warning system were: poor timing (29.9%); poor coordination (20.7%); and poor sensitization (18.4%). There is need to strengthen the community networks, and with continuous sensitization, the effectiveness of the landslides early warning will improve and this is expected to enhance the resilience of the community to landslides.


Author(s):  
Ascanio Rosi ◽  
Samuele Segoni ◽  
Vanessa Canavesi ◽  
Antonio Monni ◽  
Angela Gallucci ◽  
...  

2020 ◽  
Author(s):  
Ruihua Xiao

<p>For the recent years, highway safety control under extreme natural hazards in China has been facing critical challenges because of the latest extreme climates. Highway is a typical linear project, and neither the traditional single landslide monitoring and early warning model entirely dependent on displacement data, nor the regional meteorological early warning model entirely dependent on rainfall intensity and duration are suitable for it. In order to develop an efficient early warning system for highway safety, the authors have developed an early warning method based on both monitoring data obtained by GNSS and Crack meter, and meteorological data obtained by Radar. This early-warning system is not each of the local landslide early warning systems (Lo-LEWSs) or the territorial landslide early warning systems (Te-LEWSs), but a new system combining both of them. In this system, the minimum warning element is defined as the slope unit which can connect a single slope to the regional ones. By mapping the regional meteorological warning results to each of the slope units, and extending the warning results of the single landslides to the similar slope units, we can realize the organic combination of the two warning methods. It is hopeful to improve the hazard prevention and safety control for highway facilities during critical natural hazards with the progress of this study.</p>


2020 ◽  
Author(s):  
Tamara Breuninger ◽  
Moritz Gamperl ◽  
Kurosch Thuro

<p>The project Inform@Risk, a collaboration of German and Colombian Universities and Institutes funded by the German government, aims to install a landslide early warning system in the informal settlements in Medellín, Colombia. In the recent past the city has suffered from multiple landslides, some of them with up to 500 casualties. The informal settlements in the steep slopes at the city borders grow rapidly, which destabilizes the ground and complicates the installation and operation of an early warning system. Therefore, key goal of the project is to include the community in the process of the development of the early warning system.</p><p>Medellín is embedded in the Aburrá Valley in the Cordillera Central of the Andes. The region around the city consists of different triassic and cretaceous metamorphic rocks and magmatic batholites and plutonites. Especially the north-eastern slope is prone to landslides, as it is very steep and made up of a deep cover of soil over highly weathered dunite rock.</p><p>During the first field trip, carried out in August 2019, former landslide areas were located, and ERT-measurements were conducted at the study site Bello Oriente in the northeast of Medellín. After a first evaluation of the findings, the soil cover seems to be over 50 m high in the middle of the slope, which indicates a deep-seated landslide, that might have been moving downhill very slowly for thousands of years. The more dangerous landslides however, which are much faster, are the shallow ones on the surface. These landslides can appear on top of each other and are distributed across the whole study area but are most concentrated between and above the last houses of the barrio. During a second field campaign in 2020, the ERT-profiles will be calibrated and complemented by drillings and the hazard map will be completed accordingly.</p>


Sign in / Sign up

Export Citation Format

Share Document