Combined geophysical surveys for the characterization of a reconstructed river embankment

2016 ◽  
Vol 211 ◽  
pp. 74-84 ◽  
Author(s):  
Laura Busato ◽  
Jacopo Boaga ◽  
Luca Peruzzo ◽  
Mahjoub Himi ◽  
Simonetta Cola ◽  
...  
Data in Brief ◽  
2020 ◽  
Vol 30 ◽  
pp. 105491 ◽  
Author(s):  
Hariri Arifin ◽  
John Kayode ◽  
Khairul Arifin ◽  
Zuhar Zahir ◽  
Manan Abdullah ◽  
...  

2020 ◽  
Author(s):  
Jacopo Boaga ◽  
Marcia Phillips ◽  
Jeannette Noetzli ◽  
Anna haberkorn ◽  
Robert Kenner ◽  
...  

<p>The characterization of the active layer (AL) in mountain permafrost is an important part of monitoring climate change effects in periglagical environments and may help to determine potential slope instability. Permafrost affects 25% of the Northern Hemisphere and 17% of the entire Earth. It has been studied for decades both in the polar regions and – starting a few decades later – in high mountain environments. Typical point information from permafrost boreholes can be extended to wider areas by geophysical prospecting and provide information that cannot be detected by thermal observations alone.</p><p>During Summer 2019 we performed several geophysical surveys at permafrost borehole sites in the Swiss Alps. We focused on electrical resistivity tomography (ERT) and Frequency Domain Electro-magnetic techniques (FDEM) to compare the methods and test the applicability of FDEM for active layer characterization, i.e., its thickness and lateral continuity. ERT provides an electrical image of the subsoil and can discern active layer thickness, changes in ground ice and geological features of the subsoil. From a logistic point of view a contactless method such as FDEM would be preferable : i) it can provide electrical properties of the subsoil with no need of physical electrical contact with the soil; ii) it can cover a wider area of exploration compared to ERT, iii) it is faster and data collection is simpler than with ERT due to lighter instruments and less preparation time needed.</p><p>Based on the FDEM surveys at the Swiss permafrost sites we were able to detect the frozen/unfrozen boundary and to achieve results that were in agreement with those obtained from classical ERT and borehole temperature data. The results were promising for future active layer monitoring with the contactless FDEM method.</p>


Resources ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 51
Author(s):  
Anselme Muzirafuti ◽  
Mustapha Boualoul ◽  
Giovanni Barreca ◽  
Abdelhamid Allaoui ◽  
Hmad Bouikbane ◽  
...  

The Causse of El Hajeb belongs to the Tabular Middle Atlas (TMA), in which thousands of karst landforms have been identified. Among them, collapse dolines and dissolution sinkholes have been highlighted as a source of environmental risks and geo-hazards. In particular, such sinkholes have been linked to the degradation of water quality in water springs located in the junction of the TMA and Saïss basin. Furthermore, the developments of collapse dolines in agricultural and inhabited areas enhance the risk of life loss, injury, and property damage. Here, the lack of research on newly formed cavities has exacerbated the situation. The limited studies using remote sensing or geophysical methods to determine the degree of karstification and vulnerability of this environment fail to provide the spatial extent and depth location of individual karst cavities. In order to contribute to the effort of sinkhole risk reduction in TMA, we employed remote sensing and geophysical surveys to integrate electrical resistivity tomography (ERT) and self-potential (SP) for subsurface characterization of four sinkholes identified in the Causse of El Hajeb. The results revealed the existence of sinkholes, both visible and non-accessible at the surface, in carbonate rocks. The sinkholes exhibited distinct morphologies, with depths reaching 35 m. Topography, geographic coordinates and land cover information extracted on remote sensing data demonstrated that these cavities were developed in depressions in which agricultural activities are regularly performed. The fusion of these methods benefits from remote sensing in geophysical surveys, particularly in acquisition, georeferencing, processing and interpretation of geophysical data. Furthermore, our proposed method allows identification of the protection perimeter required to minimize the risks posed by sinkholes.


2015 ◽  
Vol 15 (2) ◽  
pp. 315-323 ◽  
Author(s):  
A. Giocoli ◽  
T. A. Stabile ◽  
I. Adurno ◽  
A. Perrone ◽  
M. R. Gallipoli ◽  
...  

Abstract. In the frame of a national project funded by Eni S.p.A. and developed by three institutes of the National Research Council (the Institute of Methodologies for Environmental Analysis, the Institute of Research for Hydrogeological Protection and the Institute for Electromagnetic Sensing of the Environment), a multidisciplinary approach based on the integration of satellite, aero-photogrammetric and in situ geophysical techniques was applied to investigate an area located in the Montemurro territory in the southeastern sector of the High Agri Valley (Basilicata Region, southern Italy). This paper reports the results obtained by the joint analysis of in situ geophysical surveys, aerial photos interpretation, morphotectonic investigation, geological field survey and borehole data. The joint analysis of different data allowed us (1) to show the shallow geological and structural setting, (2) to detect the geometry of the different lithological units and their mechanical and dynamical properties, (3) to image a previously unmapped fault beneath suspected scarps/warps and (4) to characterize the geometry of an active landslide affecting the study area.


Geosciences ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 161 ◽  
Author(s):  
Marilena Cozzolino ◽  
Luigi Maria Caliò ◽  
Vincenzo Gentile ◽  
Paolo Mauriello ◽  
Andrea Di Meo

The theater of the ancient city of Akragas has been researched for centuries and, in 2016, a multidisciplinary and multi-scale research work that involved topographic studies, analysis of satellite images, geomorphological characterization of the land, archaeological surveys, and non-invasive geophysical surveys led to its discovery. In this work, a comparison between the archaeological structures hypothesized by geophysical results and the archaeological structure excavated is presented. The area of about 5.500 m2 was investigated using electrical resistivity tomography (ERT). The survey highlighted a series of resistivity highs arranged on concentric semicircles defining perfectly the presence of an articulate building attributable to a theatrical complex of imposing dimensions (diameter of about 95 m). Archaeological excavation led to the identification of the summa cavea with the discovery of foundation-level structures arranged on a semicircle, on which the tiers were located, and cuts in the rock with seat imprints. The overlap of the technical layouts obtained from the documentation of archaeological excavation on the modelled resistivity maps shows the perfect correspondence between the features of the resistivity highs and the ancient structures actually found.


2019 ◽  
Vol 36 ◽  
pp. 72-84 ◽  
Author(s):  
Sabrina Grassi ◽  
Sebastiano Imposa ◽  
Graziano Patti ◽  
Domenico Boso ◽  
Giuseppe Lombardo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document