scholarly journals Toward a numerical-simulation-based liquefaction hazard assessment for urban regions using high-performance computing

2019 ◽  
Vol 258 ◽  
pp. 105153 ◽  
Author(s):  
Jian Chen ◽  
Hideyuki O-tani ◽  
Tomohide Takeyama ◽  
Satoru Oishi ◽  
Muneo Hori
2011 ◽  
Vol 64 (2) ◽  
Author(s):  
Giancarlo Alfonsi

The direct numerical simulation of turbulence (DNS) has become a method of outmost importance for the investigation of turbulence physics, and its relevance is constantly growing due to the increasing popularity of high-performance-computing techniques. In the present work, the DNS approach is discussed mainly with regard to turbulent shear flows of incompressible fluids with constant properties. A body of literature is reviewed, dealing with the numerical integration of the Navier-Stokes equations, results obtained from the simulations, and appropriate use of the numerical databases for a better understanding of turbulence physics. Overall, it appears that high-performance computing is the only way to advance in turbulence research through the front of the direct numerical simulation.


2020 ◽  
Vol 8 ◽  
Author(s):  
Steven J. Gibbons ◽  
Stefano Lorito ◽  
Jorge Macías ◽  
Finn Løvholt ◽  
Jacopo Selva ◽  
...  

Probabilistic Tsunami Hazard Analysis (PTHA) quantifies the probability of exceeding a specified inundation intensity at a given location within a given time interval. PTHA provides scientific guidance for tsunami risk analysis and risk management, including coastal planning and early warning. Explicit computation of site-specific PTHA, with an adequate discretization of source scenarios combined with high-resolution numerical inundation modelling, has been out of reach with existing models and computing capabilities, with tens to hundreds of thousands of moderately intensive numerical simulations being required for exhaustive uncertainty quantification. In recent years, more efficient GPU-based High-Performance Computing (HPC) facilities, together with efficient GPU-optimized shallow water type models for simulating tsunami inundation, have now made local long-term hazard assessment feasible. A workflow has been developed with three main stages: 1) Site-specific source selection and discretization, 2) Efficient numerical inundation simulation for each scenario using the GPU-based Tsunami-HySEA numerical tsunami propagation and inundation model using a system of nested topo-bathymetric grids, and 3) Hazard aggregation. We apply this site-specific PTHA workflow here to Catania, Sicily, for tsunamigenic earthquake sources in the Mediterranean. We illustrate the workflows of the PTHA as implemented for High-Performance Computing applications, including preliminary simulations carried out on intermediate scale GPU clusters. We show how the local hazard analysis conducted here produces a more fine-grained assessment than is possible with a regional assessment. However, the new local PTHA indicates somewhat lower probabilities of exceedance for higher maximum inundation heights than the available regional PTHA. The local hazard analysis takes into account small-scale tsunami inundation features and non-linearity which the regional-scale assessment does not incorporate. However, the deterministic inundation simulations neglect some uncertainties stemming from the simplified source treatment and tsunami modelling that are embedded in the regional stochastic approach to inundation height estimation. Further research is needed to quantify the uncertainty associated with numerical inundation modelling and to properly propagate it onto the hazard results, to fully exploit the potential of site-specific hazard assessment based on massive simulations.


Author(s):  
P. Downes ◽  
G. Yaikhom ◽  
J.P. Giddy ◽  
D.W. Walker ◽  
E. Spezi ◽  
...  

We report on the RTGrid project, which investigates approaches for using high-performance computing infrastructures, such as the grid, in order to reduce the turnaround time of Monte Carlo (MC) simulation-based radiotherapy treatment planning. The main aim of this project is to render accurate dose calculations using MC simulations clinically feasible. To this end, we have successfully implemented and deployed the RTGrid distributed simulation framework for MC dose calculations. In this paper, we present the main experimental findings.


Sign in / Sign up

Export Citation Format

Share Document