scholarly journals Remote sensing and three-dimensional photogrammetric analysis of glaciofluvial sand and gravel deposits for aggregate resource assessment in McHenry County, Illinois, USA

2020 ◽  
Vol 274 ◽  
pp. 105695
Author(s):  
Xiaodong Miao ◽  
Christopher J. Stohr ◽  
Paul R. Hanson ◽  
Qiansuo Wang
2021 ◽  
Vol 14 (6) ◽  
Author(s):  
Jinming Yang ◽  
Chengzhi Li

AbstractSnow depth mirrors regional climate change and is a vital parameter for medium- and long-term numerical climate prediction, numerical simulation of land-surface hydrological process, and water resource assessment. However, the quality of the available snow depth products retrieved from remote sensing is inevitably affected by cloud and mountain shadow, and the spatiotemporal resolution of the snow depth data cannot meet the need of hydrological research and decision-making assistance. Therefore, a method to enhance the accuracy of snow depth data is urgently required. In the present study, three kinds of snow depth data which included the D-InSAR data retrieved from the remote sensing images of Sentinel-1 synthetic aperture radar, the automatically measured data using ultrasonic snow depth detectors, and the manually measured data were assimilated based on ensemble Kalman filter. The assimilated snow depth data were spatiotemporally consecutive and integrated. Under the constraint of the measured data, the accuracy of the assimilated snow depth data was higher and met the need of subsequent research. The development of ultrasonic snow depth detector and the application of D-InSAR technology in snow depth inversion had greatly alleviated the insufficiency of snow depth data in types and quantity. At the same time, the assimilation of multi-source snow depth data by ensemble Kalman filter also provides high-precision data to support remote sensing hydrological research, water resource assessment, and snow disaster prevention and control program.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 951-960
Author(s):  
Haiqing Zhang ◽  
Jun Han

Abstract Traditionally, three-dimensional model is used to classify and recognize multi-target optical remote sensing image information, which can only identify a specific class of targets, and has certain limitations. A mathematical model of multi-target optical remote sensing image information classification and recognition is designed, and a local adaptive threshold segmentation algorithm is used to segment multi-target optical remote sensing image to reduce the gray level between images and improve the accuracy of feature extraction. Remote sensing image information is multi-feature, and multi-target optical remote sensing image information is identified by chaotic time series analysis method. The experimental results show that the proposed model can effectively classify and recognize multi-target optical remote sensing image information. The average recognition rate is more than 95%, the maximum robustness is 0.45, the recognition speed is 98%, and the maximum time-consuming average is only 14.30 s. It has high recognition rate, robustness, and recognition efficiency.


2015 ◽  
Vol 12 (1) ◽  
pp. 85-89 ◽  
Author(s):  
A. Giyanani ◽  
W. Bierbooms ◽  
G. van Bussel

Abstract. Remote sensing of the atmospheric variables with the use of Lidar is a relatively new technology field for wind resource assessment in wind energy. A review of the draft version of an international guideline (CD IEC 61400-12-1 Ed.2) used for wind energy purposes is performed and some extra atmospheric variables are taken into account for proper representation of the site. A measurement campaign with two Leosphere vertical scanning WindCube Lidars and metmast measurements is used for comparison of the uncertainty in wind speed measurements using the CD IEC 61400-12-1 Ed.2. The comparison revealed higher but realistic uncertainties. A simple model for Lidar beam averaging correction is demonstrated for understanding deviation in the measurements. It can be further applied for beam averaging uncertainty calculations in flat and complex terrain.


2015 ◽  
Vol 9 (1) ◽  
pp. 1-11
Author(s):  
Gábor Bakó ◽  
Gábor Kovács ◽  
Zsolt Molnár ◽  
Judit Kirisics ◽  
Eszter Góber ◽  
...  

The red mud disaster occurred on 4th October 2010 in Hungary has raised the necessity of rapid intervention and drew attention to the long-term monitoring of such threat. Both the condition assessment and the change monitoring indispensably required the prompt and detailed spatial survey of the impact area. It was conducted by several research groups - independently - with different recent surveying methods. The high spatial resolution multispectral aerial photogrammetry is the spatially detailed (high resolution) and accurate type of remote sensing. The hyperspectral remote sensing provides more information about material quality of pollutants, with less spatial details and lower spatial accuracy, while LIDAR ensures the three-dimensional shape and terrain models. The article focuses on the high spatial resolution, multispectral electrooptical method and the evaluation methodology of the deriving high spatial resolution ortho image map, presenting the derived environmental information database


Sign in / Sign up

Export Citation Format

Share Document