scholarly journals Three-dimensional steady-state simulation of flow in the sand-and-gravel aquifer, southern Escambia County, Florida

1986 ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Edward M. Harding ◽  
Emily J. Berg ◽  
Risa J. Robinson

Deposition of nanosized particles in the pulmonary region has the potential of crossing the blood-gas barrier. Experimental in vivo studies have used micron-sized particles, and therefore nanoparticle deposition in the pulmonary region is not well understood. Furthermore, little attention has been paid to the emphysematous lungs, which have characteristics quite different from the healthy lung. Healthy and emphysematous replica acinus models were created from healthy and diseased human lung casts using three-dimensional reconstruction. Particle concentration and deposition were determined by solving the convective-diffusion equation numerically for steady and unsteady cases. Results showed decreased deposition efficiencies for emphysema compared to healthy lungs, consistent with the literature and attributed to significant airway remodeling in the diseased lung. Particle diffusion was found to be six times slower in emphysema compared to healthy model. The unsteady state simulation predicted deposition efficiencies of 96% in the healthy model for the 1 nm and 3 nm particles and 94% and 93% in the emphysema model for the 1 nm and 3 nm particles, respectively. Steady state was achieved in less than one second for both models. Comparisons between steady and unsteady predictions indicate that a steady-state simulation is reasonable for predicting particle transport under similar conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chanho Moon ◽  
Kotaro Yamasaki ◽  
Yoshihiko Nagashima ◽  
Shigeru Inagaki ◽  
Takeshi Ido ◽  
...  

AbstractA tomography system is installed as one of the diagnostics of new age to examine the three-dimensional characteristics of structure and dynamics including fluctuations of a linear magnetized helicon plasma. The system is composed of three sets of tomography components located at different axial positions. Each tomography component can measure the two-dimensional emission profile over the entire cross-section of plasma at different axial positions in a sufficient temporal scale to detect the fluctuations. The four-dimensional measurement including time and space successfully obtains the following three results that have never been found without three-dimensional measurement: (1) in the production phase, the plasma front propagates from the antenna toward the end plate with an ion acoustic velocity. (2) In the steady state, the plasma emission profile is inhomogeneous, and decreases along the axial direction in the presence of the azimuthal asymmetry. Furthermore, (3) in the steady state, the fluctuations should originate from a particular axial position located downward from the helicon antenna.


Author(s):  
D. Keith Walters ◽  
Greg W. Burgreen ◽  
Robert L. Hester ◽  
David S. Thompson ◽  
David M. Lavallee ◽  
...  

Computational fluid dynamics (CFD) simulations were performed for unsteady periodic breathing conditions, using large-scale models of the human lung airway. The computational domain included fully coupled representations of the orotracheal region and large conducting zone up to generation four (G4) obtained from patient-specific CT data, and the small conducting zone (to G16) obtained from a stochastically generated airway tree with statistically realistic geometrical characteristics. A reduced-order geometry was used, in which several airway branches in each generation were truncated, and only select flow paths were retained to G16. The inlet and outlet flow boundaries corresponded to the oronasal opening (superior), the inlet/outlet planes in terminal bronchioles (distal), and the unresolved airway boundaries arising from the truncation procedure (intermediate). The cyclic flow was specified according to the predicted ventilation patterns for a healthy adult male at three different activity levels, supplied by the whole-body modeling software HumMod. The CFD simulations were performed using Ansys FLUENT. The mass flow distribution at the distal boundaries was prescribed using a previously documented methodology, in which the percentage of the total flow for each boundary was first determined from a steady-state simulation with an applied flow rate equal to the average during the inhalation phase of the breathing cycle. The distal pressure boundary conditions for the steady-state simulation were set using a stochastic coupling procedure to ensure physiologically realistic flow conditions. The results show that: 1) physiologically realistic flow is obtained in the model, in terms of cyclic mass conservation and approximately uniform pressure distribution in the distal airways; 2) the predicted alveolar pressure is in good agreement with previously documented values; and 3) the use of reduced-order geometry modeling allows accurate and efficient simulation of large-scale breathing lung flow, provided care is taken to use a physiologically realistic geometry and to properly address the unsteady boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document