Experimental investigation into the interfacial shear strength of AGS-FRP tube confined concrete pile

2009 ◽  
Vol 31 (10) ◽  
pp. 2309-2316 ◽  
Author(s):  
Gefu Ji ◽  
Zhenyu Ouyang ◽  
Guoqiang Li
2020 ◽  
Vol 12 (01) ◽  
pp. 38-43
Author(s):  
Hisham M Hasan ◽  
◽  
Ahmed R Majeed ◽  

An experimental investigation using drag-out tensile test to calculate the interfacial shear strength for different embedded lengths of Kevlar and carbon fibers reinforced epoxy matrix with nanoclay (kaolinite) for different ratio weight, the interfacial shear strength increased by with increasing of embedded length and ratio weight fraction of nanoclay that adding to epoxy matrix.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2552 ◽  
Author(s):  
Uwe Gohs ◽  
Michael Mueller ◽  
Carsten Zschech ◽  
Serge Zhandarov

Continuous glass fiber-reinforced polypropylene composites produced by using hybrid yarns show reduced fiber-to-matrix adhesion in comparison to their thermosetting counterparts. Their consolidation involves no curing, and the chemical reactions are limited to the glass fiber surface, the silane coupling agent, and the maleic anhydride-grafted polypropylene. This paper investigates the impact of electron beam crosslinkable toughened polypropylene, alkylene-functionalized single glass fibers, and electron-induced grafting and crosslinking on the local interfacial shear strength and critical energy release rate in single glass fiber polypropylene model microcomposites. A systematic comparison of non-, amino-, alkyl-, and alkylene-functionalized single fibers in virgin, crosslinkable toughened and electron beam crosslinked toughened polypropylene was done in order to study their influence on the local interfacial strength parameters. In comparison to amino-functionalized single glass fibers in polypropylene/maleic anhydride-grafted polypropylene, an enhanced local interfacial shear strength (+20%) and critical energy release rate (+80%) were observed for alkylene-functionalized single glass fibers in electron beam crosslinked toughened polypropylene.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 990
Author(s):  
Yasser Zare ◽  
Kyongyop Rhee

This study focuses on the simultaneous stiffening and percolating characteristics of the interphase section in polymer carbon nanotubes (CNTs) systems (PCNTs) using two advanced models of tensile modulus and strength. The interphase, as a third part around the nanoparticles, influences the mechanical features of such systems. The forecasts agree well with the tentative results, thus validating the advanced models. A CNT radius of >40 nm and CNT length of <5 μm marginally improve the modulus by 70%, while the highest modulus development of 350% is achieved with the thinnest nanoparticles. Furthermore, the highest improvement in nanocomposite’s strength (350%) is achieved with the CNT length of 12 μm and interfacial shear strength of 8 MPa. Generally, the highest ranges of the CNT length, interphase thickness, interphase modulus and interfacial shear strength lead to the most desirable mechanical features.


Sign in / Sign up

Export Citation Format

Share Document