Investigation of vortex-induced vibration of a suspension bridge with two separated steel box girders based on field measurements

2011 ◽  
Vol 33 (6) ◽  
pp. 1894-1907 ◽  
Author(s):  
Hui Li ◽  
Shujin Laima ◽  
Jinping Ou ◽  
Xuefeng Zhao ◽  
Wensong Zhou ◽  
...  

2020 ◽  
pp. 136943322096902
Author(s):  
Chen Fang ◽  
Ruijie Hu ◽  
Haojun Tang ◽  
Yongle Li ◽  
Zewen Wang

Vortex-induced vibration (VIV) depends on aerodynamic shapes of bridge girders, which should be treated carefully in the design of long-span bridges. This paper studies the VIV performance of a suspension bridge with the truss girder which contains two separated decks. Although truss girders generally show better VIV performance than box girders, significant vibrations of this type of girders occurred in the wind tunnel tests based on a large-scale sectional model. Several lock-in regions with the same vibration frequency were observed, corresponding to different shedding vortices. Computational fluid dynamics (CFD) simulations were carried out, and monitoring points were set behind different components to study the characteristics of the shed vortices. As the truss girder consists of many members, the results show that various vortices with different dominant frequencies are formed in the wake flow. The vertical VIV of the bridge is probably driven by the vortices behind or above the upper deck, which is related to the guardrails. The torsional VIV of the bridge is probably driven by the vortices behind or below the lower deck, which is related to the service road at lower wind speeds while may be related the vertical stabilizers at higher wind speeds.



Author(s):  
Jian Zhang ◽  
Liming Zhou ◽  
Yongding Tian ◽  
Shanshan Yu ◽  
Wenju Zhao ◽  
...  


Author(s):  
Michael A. Tognarelli ◽  
Rene D. Gabbai ◽  
Mike Campbell

Field measurements of the response of a number of drilling risers indicate that vortex-induced vibration (VIV) occurs significantly less often than predicted by the industry-standard fatigue analysis computer program SHEAR7 V4.4. Several comparisons to model tests and field data, including one published by BP and 2H in 2007 [1], demonstrate that this analysis program is generally quite conservative, given that VIV occurs. Furthermore, this conservatism does not take into account those situations in which VIV fatigue is predicted but none is observed in the field, which adds yet another layer of “hidden” conservatism to design analyses. In an effort to address this and reduce conservatism to a more appropriate level, the probability of occurrence of vortex-induced vibration (VIV) is examined using full-scale measured data. The data has been collected over the past several years from five drilling risers without VIV suppression devices. These risers are on rigs under contract to BP at high-current-susceptible sites worldwide. Collectively, the data correspond to 9,600 10-minute field measurements, equivalent to 0.18 years of continuous monitoring. The riser response is obtained from motion loggers placed at selected positions along the riser as described in [1]. Each logger measures 3D accelerations and 2D angular rates. Through-depth currents are measured via Acoustic Doppler Current Profilers (ADCP). By comparison of measurements to computer predictions based on the observed current profile, a relationship is developed between the intensity of the fatigue damage predicted and the probability that VIV is observed in the field. Subsequently, an approach is proposed for scaling analysis predictions to reflect the relative likelihood of VIV. The database of measured and SHEAR7 maximum predicted fatigue damage rates is statistically characterized to determine how it may be used to determine factors of safety (FOS) for VIV design. A worked example for a deepwater drilling riser in the GoM is used to show how the FOS methodology can be applied in the case of multiple design currents each with a different annual probability of occurrence.



2019 ◽  
Vol 16 (1) ◽  
pp. 84-93 ◽  
Author(s):  
You Chan Hwang ◽  
Sunjoong Kim ◽  
Ho-Kyung Kim




Author(s):  
Michael Tognarelli ◽  
Emmanuel Fontaine ◽  
Pierre Beynet ◽  
Mikhail Santosa ◽  
Hayden Marcollo

The development of a vortex induced vibration (VIV) fatigue factor of safety (FoS) consistent with state-of-the-art industry design practice is cast within the coherent framework of reliability analysis. The proposed methodology consists of the following steps: (i) define the failure criteria or limit-state function (ii) setup a deterministic analysis model (iii) characterize the uncertainties involved in the problem (iv) propagate the uncertainties through the deterministic model and assess the probability of failure due to VIV fatigue and (v) calculate the FoS required to achieve a given failure probability. The proposed methodology is demonstrated by determining the FoS associated with using state-of-the-art VIV prediction models to attain varying reliability levels (probabilities of failure) in a hypothetical design scenario. Prediction uncertainty is based herein on measured flow and response data for several full-scale drilling risers working in the field. Results indicate that depending on the reliability level required of a particular design, different FoS than those that currently appear in guidance may be appropriate. Results also indicate the sensitivity of the FoS to the riser and prevailing current type, analysis program and input parameters, and accumulation of conservatism in aggregate versus single-event damage predictions.



2019 ◽  
Vol 9 (10) ◽  
pp. 2049 ◽  
Author(s):  
Zhiwen Huang ◽  
Yanzhe Li ◽  
Xugang Hua ◽  
Zhengqing Chen ◽  
Qing Wen

Vortex-induced vibration (VIV) has been occasionally observed on a few long-span steel box-girder suspension bridges. The underlying mechanism of VIV is very complicated and reliable theoretical methods for prediction of VIV have not been established yet. Structural health monitoring (SHM) technology can provide a large amount of data for further understanding of VIV. Automatic identification of VIV events from massive, continuous long-term monitoring data is a non-trivial task. In this study, a method based on the random decrement technique (RDT) is proposed to identify the VIV response automatically from the massive acceleration response without manual intervention. The raw acceleration data is first processed by RDT and it is found that the RDT-processed data show different characteristics for the VIV response and conventional random response. A threshold based on the coefficient of variation (COV) of peak values of processed data is defined to distinguish between the two kinds of responses. Both random vibration and VIV for a three-DOF (degree-of-freedom) mass-spring-damper system are obtained by numerical simulation to verify the proposed method. The method is finally applied to the Xihoumen suspension bridge for identifying VIV response from three-month monitoring data. It is shown that the proposed method performs comparably with the method of novelty detection. A total of 60 VIV events have been successfully identified. Vortex-induced vibrations for the second to ninth vertical modes with modal frequency within 0.1~0.5 Hz occurs at wind velocity 5–18 m/s, with wind direction nearly perpendicular to bridge axis. Amplitude of VIV generally decreases with increase of wind turbulence intensity; however, noticeable VIV amplitude are still observed for turbulence intensity up to 13% in some cases.



2014 ◽  
Vol 633-634 ◽  
pp. 1263-1266
Author(s):  
Huang Yu

For modern long-span bridges, both the optimization of aerodynamic shape and the increase of torsional stiffness according to the result of the wind tunnel experiment could avoid the flutter instability.Vortex-inducedvibration with relatively large amplitude happens easily at low wind speeds. In this paper, based on wind tunnel experiment, by studying on the vortex-induced vibration characteristics of a long-span suspension bridge with single cable plane, aerodynamic measures for easing the vortex-induced vibration are given.



2013 ◽  
Vol 39 ◽  
pp. 205-221 ◽  
Author(s):  
Shujin Laima ◽  
Hui Li ◽  
Wenli Chen ◽  
Fengchen Li


Sign in / Sign up

Export Citation Format

Share Document