Experimental and numerical study on vortex-induced vibration of a truss girder with two decks

2020 ◽  
pp. 136943322096902
Author(s):  
Chen Fang ◽  
Ruijie Hu ◽  
Haojun Tang ◽  
Yongle Li ◽  
Zewen Wang

Vortex-induced vibration (VIV) depends on aerodynamic shapes of bridge girders, which should be treated carefully in the design of long-span bridges. This paper studies the VIV performance of a suspension bridge with the truss girder which contains two separated decks. Although truss girders generally show better VIV performance than box girders, significant vibrations of this type of girders occurred in the wind tunnel tests based on a large-scale sectional model. Several lock-in regions with the same vibration frequency were observed, corresponding to different shedding vortices. Computational fluid dynamics (CFD) simulations were carried out, and monitoring points were set behind different components to study the characteristics of the shed vortices. As the truss girder consists of many members, the results show that various vortices with different dominant frequencies are formed in the wake flow. The vertical VIV of the bridge is probably driven by the vortices behind or above the upper deck, which is related to the guardrails. The torsional VIV of the bridge is probably driven by the vortices behind or below the lower deck, which is related to the service road at lower wind speeds while may be related the vertical stabilizers at higher wind speeds.

2014 ◽  
Vol 633-634 ◽  
pp. 1263-1266
Author(s):  
Huang Yu

For modern long-span bridges, both the optimization of aerodynamic shape and the increase of torsional stiffness according to the result of the wind tunnel experiment could avoid the flutter instability.Vortex-inducedvibration with relatively large amplitude happens easily at low wind speeds. In this paper, based on wind tunnel experiment, by studying on the vortex-induced vibration characteristics of a long-span suspension bridge with single cable plane, aerodynamic measures for easing the vortex-induced vibration are given.


2020 ◽  
pp. 136943322095682
Author(s):  
Junjie Guo ◽  
Haojun Tang ◽  
Yongle Li ◽  
Zewen Wang

Normally strong winds in mountainous areas possess potential threats to the safety of vehicles travelling over the long-span bridges. Generally, decreasing the porosity of the guardrails could improve wind environment for vehicles, while the changed flow field around the bridge’s girder may weaken the structural aerodynamic stability simultaneously. To solve the two seemingly contradictory issues, such a long-span suspension bridge in mountainous areas is taken as the case study, and the guardrails are optimized with different schemes. The effects on wind environment for vehicles under normal traffic conditions are first studied by computational fluid dynamics (CFD) simulations. The further effects on the aerodynamic stability of the bridge under extreme winds are then determined by wind tunnel tests, and the observed non-divergent flutter is explainedbythe change in dynamic flow field. Results show that reducing the porosity of guardrails does improve the wind environment above the bridge deck, and the improvement on wind environment increases with the increase in angle of attack. After closing the guardrails completely, however, the girder appears non-divergent vibration different from the linear theoretical flutter when the critical wind speed is exceeded. The different post-flutter behaviors at different angles of attack are mainly related to the synchronization condition between the movement of vortex and the motion of the girder.


2014 ◽  
Vol 638-640 ◽  
pp. 1067-1078
Author(s):  
Ting Yang ◽  
Zhi Yong Zhou

To study the mechanism on the vortex resonance characteristics of the central-slotted box girders, the large-scale sectional model vibration measurement and pressure measurement are employed. This paper takes a long-span cable-stayed bridge over the Yangtze River as an example to conduct the wind tunnel tests of large-scale sectional model. The test results indicate that it is the inside maintenance rails located in the aerodynamic susceptible sites that cause the vortex-induced vibration (VIV) of bridge model. Accordingly, the inside maintenance rails are proposed to be moved towards the central axis by a certain distance. The static pressure test results show that when shifting the inside maintenance rails, the negative mean pressure at the soffit plate knuckle line will not change dramatically, the fluctuating pressures on the upwind and downwind inclined panels can be reduced, and the fluctuating energy will be dispersed without a consistent predominant frequency. Wind tunnel tests of modified section are conducted and the results show that the VIV of bridge model can be suppressed completely due to the shift of inside rails.


2018 ◽  
Vol 22 (6) ◽  
pp. 1255-1265 ◽  
Author(s):  
Yongle Li ◽  
Chuanjin Yu ◽  
Xingyu Chen ◽  
Xinyu Xu ◽  
Koffi Togbenou ◽  
...  

A growing number of long-span bridges are under construction across straits or through valleys, where the wind characteristics are complex and inhomogeneous. The simulation of inhomogeneous random wind velocity fields on such long-span bridges with the spectral representation method will require significant computation resources due to the time-consuming issues associated with the Cholesky decomposition of the power spectrum density matrixes. In order to improve the efficiency of the decomposition, a novel and efficient formulation of the Cholesky decomposition, called “Band-Limited Cholesky decomposition,” is proposed and corresponding simulation schemes are suggested. The key idea is to convert the coherence matrixes into band matrixes whose decomposition requires less computational cost and storage. Subsequently, each decomposed coherence matrix is also a band matrix with high sparsity. As the zero-valued elements have no contribution to the simulation calculation, the proposed method is further expedited by limiting the calculation to the non-zero elements only. The proposed methods are data-driven ones, which can be applicable broadly for simulating many complicated large-scale random wind velocity fields, especially for the inhomogeneous ones. Through the data-driven strategies presented in the study, a numerical example involving inhomogeneous random wind velocity field simulation on a long-span bridge is performed. Compared to the traditional spectral representation method, the simulation results are with high accuracy and the entire simulation procedure is about 2.5 times faster by the proposed method for the simulation of one hundred wind velocity processes.


2020 ◽  
pp. 107754632094615
Author(s):  
Yanguo Sun ◽  
Yongfu Lei ◽  
Ming Li ◽  
Haili Liao ◽  
Mingshui Li

As flutter is a very dangerous wind-induced vibration phenomenon, the mitigation and control of flutter are crucial for the design of long-span bridges. In the present study, via a large number of section model wind tunnel tests, the flutter performance of a superlong-span suspension bridge with a double-deck truss girder was studied, and a series of aerodynamic and structural measures were used to mitigate and control its flutter instability. The results show that soft flutter characterized by a lack of an evident divergent point occurred for the double-deck truss girder. Upper central stabilizers on the upper deck, lower stabilizers below the lower deck, and horizontal flaps installed beside the bottoms of the sidewalks are all effective in suppressing flutter for this kind of truss girder. By combining the structural design with aerodynamic optimizations, a redesigned truss girder with widened upper carriers and sidewalks, and double lower stabilizers combined with the inspection vehicle rails is identified as the optimal flutter mitigation scheme. It was also found that the critical flutter wind speed increases with the torsional damping ratio, indicating that the dampers may be efficient in controlling soft flutter characterized by single-degree-of-freedom torsional vibration. This study aims to provide a useful reference and guidance for the flutter design optimization of long-span bridges with double-deck truss girders.


Sign in / Sign up

Export Citation Format

Share Document