An algorithm for dynamic vehicle-track-structure interaction analysis for high-speed trains

2017 ◽  
Vol 148 ◽  
pp. 857-877 ◽  
Author(s):  
Maria Fedorova ◽  
M.V. Sivaselvan
Author(s):  
Mustafa Eroğlu ◽  
Mehmet Akif Koç ◽  
İsmail Esen ◽  
Recep Kozan

2008 ◽  
Vol 9 (1) ◽  
pp. 137-146 ◽  
Author(s):  
Jin-Ho Kim ◽  
Jae-Woo Lee ◽  
Soo-Hyung Park ◽  
Do-Young Byun ◽  
Yung-Hwan Byun ◽  
...  

2018 ◽  
Vol 196 ◽  
pp. 01050
Author(s):  
Monika Podwórna

The study focuses on dynamic analysis of composite bridge / track structure / train systems (BTT systems) with random vertical track irregularities taken into consideration. The paper presents the results of numerical analysis of advanced virtual models of series-of-types of single-span simply-supported railway steel-concrete bridges (SCB) with symmetric platforms, located on lines with the ballasted track structure adapted to traffic of high-speed trains.


2003 ◽  
Vol 87 (9) ◽  
pp. 15-21 ◽  
Author(s):  
David Place ◽  
Stuart Davis ◽  
Michael Barron

2008 ◽  
Vol 309 (3-5) ◽  
pp. 407-425 ◽  
Author(s):  
Nan Zhang ◽  
He Xia ◽  
Weiwei Guo

2018 ◽  
Vol 13 (3) ◽  
Author(s):  
Antonio Martínez-De la Concha ◽  
Héctor Cifuentes ◽  
Fernando Medina

This paper analyzes the dynamic soil–structure interaction (SSI) of a railway bridge under the load transmitted by high-speed trains using the finite element method (FEM). In this type of bridges, the correct analysis of SSI requires proper modeling of the soil; however, this task is one of the most difficult to achieve with the FEM method. In this study, we explored the influence of SSI on the dynamic properties of the structure and the structure's response to high-speed train traffic using commercial finite element software with direct integration and modal superposition methods. High-speed trains are characterized by the high-speed load model (HSLM) in the Eurocode. We performed sensitivity analyses of the influence of several parameters on the model, such as the size and stiffness of the discretized soil, mesh size, and the influence of the dynamic behavior of the excitation. Based on the results, we make some important and reliable recommendations for building an efficient and simple model that includes SSI. We conducted a dynamic analysis of a full model of a general multispan bridge including the piers, abutments, and soil and identified the impact factors that affected the design of the bridge. The analysis revealed that the methodology we propose allows for a more accurate determination of the dynamic effects of the passage of a train over the bridge, compared to the simpler and more widely used analysis of a directly supported isolated deck, which tends to overestimate the impact factors.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Junjie Huang ◽  
Qian Su ◽  
Ting Liu ◽  
Wei Wang

This paper investigates behavior and control of the ballastless track-subgrade vibration induced by high-speed trains under mud pumping occurring in the subgrade bed. The characteristics of mud pumping occurring in the subgrade bed under the ballastless track structure are analyzed by visual observation and nondestructive testing. Then, based on the injection of the low-viscosity epoxy resin (LVER), the repair procedures for the mud pumping are proposed. A variety of on-site tests are performed on the ballastless track-subgrade with and without mud pumping and also after mud pumping reinforcement to analyze the vibration of the ballastless track-subgrade under the high-speed trains. The test results show that mud pumping can significantly increase the vertical vibration acceleration and displacement of the ballastless track structure and slightly decrease the vibration of subgrade surface. After mud pumping reinforcement, the abnormal vibration of the ballastless track-subgrade can be effectively controlled to make the vibration close to normal. In addition, the vibration ratio of the subgrade surface to the concrete base is proposed as a way to evaluate the effectiveness of the reinforcement of the mud pumping using the LVER, based on the vibration attenuation feature of the ballastless track-subgrade.


Sign in / Sign up

Export Citation Format

Share Document