Modeling SRP-concrete interfacial bond behavior and strength

2019 ◽  
Vol 187 ◽  
pp. 220-230 ◽  
Author(s):  
F. Ascione ◽  
M. Lamberti ◽  
A. Napoli ◽  
A.G. Razaqpur ◽  
R. Realfonzo
2019 ◽  
Vol 8 (2) ◽  
pp. 70-78
Author(s):  
Shanshan Cheng

This paper presents a theoretical solution of a reinforcement-to-concrete interface model under pull-push loading. Expressions for the interfacial shear stress distribution and load-displacement history are derived for different loading stages. The full debonding propagation process is discussed in detail and the analytical solutions are verified by comparing with existing theoretical models. Results of the analytical solution are presented to illustrate how the bond length and local bond-slip law affect the interfacial bond behavior. While the case study in this paper is on textile reinforced concrete, the analytical solution is equally valid to similar mechanical cases such as rebar reinforced concretes.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 150
Author(s):  
Zongping Chen ◽  
Jiyu Tang ◽  
Xingyu Zhou ◽  
Ji Zhou ◽  
Jianjia Chen

For the engineering structure in case of fire, a fire hydrant is generally used for extinguishing the fire. This paper presents an experimental investigation on interfacial bond behavior of high-strength concrete-filled steel tube (HSCFST) after exposure to elevated temperatures and cooled by fire hydrant using the pull-out test of 22 specimens. According to the experimental study, the failure mechanism of HSCFST exposed to elevated temperatures and water-cooling (ETWC) was revealed, the influence of various parameters on the bond behavior was analyzed, and the calculation formula of the bond strength of HSCFST subjected to ETWC was put forward. The results show that the load-slip curves of the loading end and the free end of the specimen are basically similar, and can be divided into three types of typical curves. In the push out test, the strain on the outer surface of the steel tube is exponentially distributed with its distance from the loading end. After ETWC exposure, the bond strength of the specimen is less affected by the concrete strength, which is inversely proportional to the anchorage length, and it is basically stable after the constant temperature duration is longer than 60 min. With the increase of the maximum temperature, the ultimate bond strength increases first, then decreases and then increases, and the residual bond strength increases first and then decreases. Besides, the study indicate that cooling method has significant influence on the bond behavior, compared with natural cooling specimens, the ultimate bond strength, residual bond strength, and shear bond stiffness of water-cooling specimens are smaller, and the interfacial energy dissipation capacity is larger.


2020 ◽  
Vol 238 ◽  
pp. 117743 ◽  
Author(s):  
Qiuni Fu ◽  
Libo Yan ◽  
Ting Ning ◽  
Bo Wang ◽  
Bohumil Kasal

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7053
Author(s):  
Huijuan Dai ◽  
Bo Wang ◽  
Jiawei Zhang ◽  
Junlei Zhang ◽  
Kimitaka Uji

This paper presents the results of pull-out tests conducted to investigate the interfacial bond behavior between a carbon-fiber-reinforced polymer (CFRP) grid–polymer cement mortar (PCM) reinforcing layer and existing concrete, and proposes a simplified mechanical model to further study the interface bond mechanism. Four specimens composed of a CFRP grid, PCM, and concrete were tested. The influence of the type of CFRP grid and the grid interval on the interface bond behavior was discussed. The failure patterns, maximum tensile loads, and CFRP grid strains were obtained. The change process of interface bond stress was investigated based on the grid strain analysis. In addition, the simplified mechanical model and finite element model (FEM) were emphatically established, and the adaptability of the simplified mechanical model was validated through the comparative analysis between the FEM results and the test results. The research results indicate that a CFRP grid with a larger cross-sectional area and smaller grid interval could effectively improve the interface bond behavior. The tensile stress was gradually transferred from the loaded edge to the free edge in the CFRP grid. The interface bond behavior was mainly dependent on the anchorage action of the CFRP grid in the PCM, and the bond action between the PCM and the concrete. The FEM results were consistent with the test results, and the simplified mechanical model with nonlinear springs could well describe the interface bond mechanism between the CFRP grid–PCM reinforcing layer and concrete.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 377 ◽  
Author(s):  
Long Zhang ◽  
Shuangyin Cao ◽  
Xin Tao

Using carbon fiber reinforced polymer (CFRP) composites for enhancing the fatigue behavior of the steel structures will be an important application. As the most critical part, the fatigue behavior of the CFRP-to-steel bonded interface directly determines the strengthening effect of steel structures reinforced by CFRP. In this paper, a series of CFRP-to-steel double-shear specimens are performed in order to study the interfacial bond behavior between CFRP and steel under fatigue loading. Two parameters are considered: the upper bound value and the lower bound value of the fatigue loading. An analysis of test results indicates that the crack development rate increases with the increment of the stress ratio or stress level and the crack development process includes two phases: crack stable development phase and debonding failure phase. A calculation model is put forward to describe the relationship between the crack development rate and the stress level. Besides, it can be obtained from the test results that the fatigue lives of the specimens decrease with the increment of the stress level. The empirical formula of S-N curve based on the form of single logarithm formula is proposed and the fatigue limit under the experimental conditions in this paper is determined to be 0.343 by computational analysis.


Structures ◽  
2020 ◽  
Vol 26 ◽  
pp. 79-91 ◽  
Author(s):  
Pu Zhang ◽  
Yi Hu ◽  
Yuyang Pang ◽  
Hu Feng ◽  
Danying Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document