Tuned inerter dampers for civil structures subjected to earthquake ground motions: optimum design and seismic performance

2019 ◽  
Vol 198 ◽  
pp. 109470 ◽  
Author(s):  
Wenai Shen ◽  
Abdou Niyitangamahoro ◽  
Zhouquan Feng ◽  
Hongping Zhu
2013 ◽  
Vol 29 (4) ◽  
pp. 1477-1494 ◽  
Author(s):  
Zhe Qu ◽  
Shoichi Kishiki ◽  
Toshiyuki Nakazawa

The pounding of retaining walls forms a potential risk of degrading the performance of seismically base-isolated buildings subjected to strong, especially near-fault, earthquake ground motions. Incremental dynamic analysis is employed to generate the so-called gap graph, in which two characteristic gap sizes of a base-isolated building are related with the isolation period of the building and the strengthof the superstructure. Thegapgraph canbe usedto evaluate the required gap size for a base-isolated building to have certain collapse performance. By means of gap graphs, the interdependent relations of gap size with other important factors that influence the seismic performance of the base-isolated building are examined. In particular, the results show that near-fault pulse-like ground motions are likely to impose much higher demand for the isolation gap than far-field ones.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Arturo López-Barraza ◽  
Edén Bojórquez ◽  
Sonia E. Ruiz ◽  
Alfredo Reyes-Salazar

The aim of this paper is to study the seismic performance of self-centering moment-resisting steel frames with posttensioned connections taking into account nonlinear material behavior, for better understanding of the advantages of this type of structural system. Further, the seismic performance of traditional structures with rigid connections is compared with the corresponding equivalent posttensioned structures with semirigid connections. Nonlinear time history analyses are developed for both types of structural systems to obtain the maximum and the residual interstory drifts. Thirty long-duration narrow-banded earthquake ground motions recorded on soft soil sites of Mexico City are used for the analyses. It is concluded that the structural response of steel buildings with posttensioned connections subjected to intense earthquake ground motions is reduced compared with the seismic response of traditional buildings with welded connections. Moreover, residual interstory drift demands are considerably reduced for the system with posttensioned connections, which is important to avoid the demolition of the buildings after an earthquake.


2008 ◽  
Vol 24 (1) ◽  
pp. 279-298 ◽  
Author(s):  
Paul Spudich ◽  
Brian S. J. Chiou

We present correction factors that may be applied to the ground motion prediction relations of Abrahamson and Silva, Boore and Atkinson, Campbell and Bozorgnia, and Chiou and Youngs (all in this volume) to model the azimuthally varying distribution of the GMRotI50 component of ground motion (commonly called “directivity”) around earthquakes. Our correction factors may be used for planar or nonplanar faults having any dip or slip rake (faulting mechanism). Our correction factors predict directivity-induced variations of spectral acceleration that are roughly half of the strike-slip variations predicted by Somerville et. al. (1997), and use of our factors reduces record-to-record sigma by about 2–20% at 5 sec or greater period.


Sign in / Sign up

Export Citation Format

Share Document