Reinforced high-strength engineered cementitious composite (ECC) columns under eccentric compression: Experiment and theoretical model

2019 ◽  
Vol 198 ◽  
pp. 109541 ◽  
Author(s):  
Ling-Zhi Li ◽  
Yang Bai ◽  
Ke-Quan Yu ◽  
Jiang-Tao Yu ◽  
Zhou-Dao Lu
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jie Li ◽  
Yuanhong Hu ◽  
Dayu Yang ◽  
Tengda Feng ◽  
Yan Liang ◽  
...  

The main function of pier is to transmit the load from superstructure to foundation reliably. Under earthquake action, the main failure reason of bridge is the damage of bridge pier. The application of some high-performance materials is helpful to improve the seismic performance of bridge piers. Based on seismic vulnerability analysis, this paper studies the feasibility of using engineered cementitious composite (ECC) and high-strength bars in bridge piers. Taking a rigid pier as an example, a nonlinear numerical model is established by OpenSees software. The reasonable replacement height of ECC in plastic hinge regions, stirrup ratio of pier section, and replacement rate of high-strength bars are obtained through the seismic performance analysis of the pier. Then, seismic vulnerability of rigid pier with ECC and high-strength bars is analyzed. The results show that it is feasible to improve the seismic performance of the piers by using ECC and high-strength bars. Considering the economic rationality, the replacement height of ECC in plastic hinge regions can be determined according to the curvature change point. For the rigid pier, the economical and reasonable volume stirrup ratio is 0.78%. The ultimate curvature of RC/ECC pier bottom increases by 12.4% when the longitudinal bars of the pier are replaced by high-strength bars, and the energy dissipation capacity increases by 22.5% on average. Compared with the pier’s original design, the exceedance probability of each limit state of the rigid pier with ECC and high-strength bars is significantly reduced. Its seismic performance is superior, and the risk of seismic damage is significantly reduced.


2016 ◽  
Vol 860 ◽  
pp. 125-134 ◽  
Author(s):  
Abla Krouma ◽  
Zubair Imam Syed

Engineered Cementitious Composite (ECC) is a material with high ductility, tensile strength and self-healing more than the standard concrete. Applications of ECC are beneficial due to its long life cycle, high strength, low cost in the long-term, low maintenance and environmentally friendly nature. Properties and hardened behavior of ECC highlights that ECC has a tight crack width development, which increases its ability to resist long-term effects of hot, frost and humid weather. Additionally, it results low water permeability coefficient and high steel corrosion resistance compared to other common alternative materials. One of the promising areas of application for ECC is in highway structures, especially highway bridges. Highway structures suffer constantly from adverse environmental loads and often require frequent repairing or replacing due to cracks; expansion; water and chlorides effects which cause steel corrosion or the slope between the pavement, slab and the support at the end of a bridge. Detailed review on different properties and characteristics of ECC and the current applications of ECC clearly highlights the motivation to enhance the use of ECC for bridge construction. In addition, ECC can be introduced in jointless bridges by putting an ECC link slab instead of the expandable mechanical joint.


Sign in / Sign up

Export Citation Format

Share Document