Effect of water to binder ratio and sand to binder ratio on shrinkage and mechanical properties of High-strength Engineered Cementitious Composite

2019 ◽  
Vol 226 ◽  
pp. 899-909 ◽  
Author(s):  
Binbin Ye ◽  
Yaoting Zhang ◽  
Jianguo Han ◽  
Peng Pan
2016 ◽  
Vol 50 (30) ◽  
pp. 4291-4305 ◽  
Author(s):  
Jun Zhang ◽  
Zhenbo Wang ◽  
Qing Wang ◽  
Yuan Gao

The flexural performance of polyvinyl alcohol-steel hybrid fiber reinforced engineered cementitious composite with characteristics of low drying shrinkage special focus on impacts of steel fiber content and matrix strength has been investigated in both experimental and theoretical aspects in this paper. Four matrix types with water to binder ratio of 0.25, 0.35, 0.45, and 0.55 and three additional steel fiber contents in the composite with polyvinyl alcohol fiber content of 1.7% in volume were used in the test program. The experimental results show that cracking and flexural strength of the composites are increased with the addition of steel fiber. This enhancement becomes more and more pronounced with decreasing of water to binder ratio of the composites. Meanwhile, fracture mechanics-based flexural model is used to simulate the flexure performance of the polyvinyl alcohol -steel hybrid fiber reinforced engineered cementitious composite with characteristics of low drying shrinkage. The model results show that a double peak load is expected of the composites under bending load. The first peak is controlled by the fracture toughness of matrix or cracking strength of matrix, and the second peak is governed by the fiber bridging. The effect of addition of steel fiber in engineered cementitious composite with characteristics of low drying shrinkage on the first peak is unapparent. The impact of steel fiber on the second peak is significant. This enhancement of additional steel fiber gradually decreases with the decrease of water to binder ratio of the matrix, which coincides well with the experimental findings. The test results are compared to the model and reasonable agreement is found.


2013 ◽  
Vol 357-360 ◽  
pp. 1328-1331
Author(s):  
Bai Rui Zhou ◽  
Dong Dong Han ◽  
Jian Hua Yang ◽  
Yi Liang Peng ◽  
Guo Xin Li

Portland cement, crushed stone, sand and superplasticizer were used to obtain a high strength concrete with a low water to binder ratio. A reticular polypropylene fiber and a single polypropylene fiber were used to improve the strength of the high strength concrete, but the effects of the two fibers on the slump and strengths were quite different. The reasons of the differences were the surface area and the modulus of elasticity of the fibers. The results show the reticular fiber was better to used in high strength concretes.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Daniel Bohling ◽  
Andrzej Cwirzen ◽  
Karin Habermehl-Cwirzen

Full utilization of mechanical properties of glass fiber fabric-reinforced cement composites is very limited due to a low bond strength between fibers and the binder matrix. An experimental setup was developed and evaluated to correlate the mortar penetration depth with several key parameters. The studied parameters included fresh mortar properties, compressive and flexural strengths of mortar, the fabric/mortar bond strength, fabric pullout strength, and a single-lap shear strength. Results showed that an average penetration of mortar did not exceed 100 µm even at a higher water-to-binder ratio. The maximum particle size of the used fillers should be below an average spacing of single glass fibers, which in this case was less than 20 µm to avoid the sieving effect, preventing effective penetration. The pullout strength was strongly affected by the penetration depth, while the single-lap shear strength was also additionally affected by the mechanical properties of the mortar.


ICSDEMS 2019 ◽  
2020 ◽  
pp. 259-264
Author(s):  
Nurmazidah Abdullah Zawawi ◽  
Chai Lian Oh ◽  
Siong Wee Lee ◽  
Mohd Raizamzamani Md Zain ◽  
Norrul Azmi Yahya

2019 ◽  
Vol 815 ◽  
pp. 216-222
Author(s):  
Chao Chen ◽  
Jin Ming Liu ◽  
Yang Yang ◽  
Zhi Guo Guo

The ocean islands are far from inland and the concrete sandstone aggregates are scarce. In this paper, high-performance seawater all-coral concrete was developed by seawater mixing and room temperature maintenance design, and by optimizing the water-to-binder ratio, regulating internal curing, changing auxiliary cementing materials and blending ratio, incorporating expansion agent, adjusting fiber blending, etc. Combined with the consideration of work performance and mechanical properties, the concrete self-shrinkage is adjusted to further optimize the mix design. The mechanical properties of the optimized high-performance seawater all-coral concrete were studied, and the relevant durability tests were carried out according to the natural environment characteristics of the island. This is of great significance to the construction of island projects, repair and construction, and construction of protective projects [1].


Sign in / Sign up

Export Citation Format

Share Document