Self-healing of PE-fiber reinforced lightweight high-strength engineered cementitious composite

Author(s):  
Kequan Yu ◽  
Mengjun Hou ◽  
He Zhu ◽  
Victor C. Li
2016 ◽  
Vol 860 ◽  
pp. 125-134 ◽  
Author(s):  
Abla Krouma ◽  
Zubair Imam Syed

Engineered Cementitious Composite (ECC) is a material with high ductility, tensile strength and self-healing more than the standard concrete. Applications of ECC are beneficial due to its long life cycle, high strength, low cost in the long-term, low maintenance and environmentally friendly nature. Properties and hardened behavior of ECC highlights that ECC has a tight crack width development, which increases its ability to resist long-term effects of hot, frost and humid weather. Additionally, it results low water permeability coefficient and high steel corrosion resistance compared to other common alternative materials. One of the promising areas of application for ECC is in highway structures, especially highway bridges. Highway structures suffer constantly from adverse environmental loads and often require frequent repairing or replacing due to cracks; expansion; water and chlorides effects which cause steel corrosion or the slope between the pavement, slab and the support at the end of a bridge. Detailed review on different properties and characteristics of ECC and the current applications of ECC clearly highlights the motivation to enhance the use of ECC for bridge construction. In addition, ECC can be introduced in jointless bridges by putting an ECC link slab instead of the expandable mechanical joint.


2020 ◽  
Vol 54 (26) ◽  
pp. 3949-3965 ◽  
Author(s):  
Xuan Zheng ◽  
Jun Zhang ◽  
Zhenbo Wang

In the present paper, a modified micromechanics based model that describes the crack bridging stress in randomly oriented discontinuous fiber reinforced engineered cementitious composite is developed. In the model, effect of multiple matrix cracking on fiber embedded length, which in turn influencing fiber bridging in the composite, is taken into consideration. First, crack spacing of high strength-low shrinkage engineered cementitious composite was experimentally determined by photographing the specimen surface at some given loading points during uniaxial tensile test. The diagram of average cracking spacing and loading time of each composite is obtained based on above data. Then, fiber bridging model is modified by introducing a revised fiber embedment length as a function of crack spacing. The model is verified with uniaxial tensile test on both tensile strength and crack opening. Good agreement between model and test results is obtained. The modified model can be used in design and prediction of tensile properties of fiber reinforced cementitious composites with characteristics of multiple matrix cracking.


2019 ◽  
Vol 53 (28-30) ◽  
pp. 4285-4304 ◽  
Author(s):  
Alaa Mohammedameen ◽  
Abdulkadir Çevik ◽  
Radhwan Alzeebaree ◽  
Anıl Niş ◽  
Mehmet Eren Gülşan

Conventional concrete suffers from brittle failures under mechanical behaviour, and lack of ductility results in the loss of human life and property in earthquake zones. Therefore, the degree of ductility becomes significant in seismic regions. This paper investigates the influence of poly-vinyl alcohol fibers, basalt fiber-reinforced polymer (BFRP) and carbon fiber-reinforced polymer (CFRP) fabrics on the ductility and mechanical performance of low (LCFA) and high (HCFA) calcium fly ash-based engineered cementitious composite concrete. The study also focuses on the mechanical behaviour of the CFRP and BFRP materials using different matrix types exposed to 3.5% seawater environment. Cyclic loading and scanning electron microscopy observations were also performed to see the effect of chloride attack on mechanical performance and ductility of the specimens. In addition, utilization of CFRP and BFRP fabrics as a retrofit material is also evaluated. Results indicated that the degree of ductility and mechanical performance were found to be superior for the CFRP-engineered cementitious composite hybrid specimens under ambient environment, while LCFA-CFRP hybrid specimens showed better performance under seawater environment. The effect of matrix type was also found significant when engineered cementitious composite is used together with fiber-reinforced polymer materials. In addition, both fiber-reinforced polymer materials can be used as a retrofit material under seawater environment.


2019 ◽  
Vol 9 (24) ◽  
pp. 5275
Author(s):  
Liqiang Yin ◽  
Shuguang Liu ◽  
Changwang Yan ◽  
Ju Zhang ◽  
Xiaoxiao Wang

The concrete in the transition strips of expansion joints can become damaged prematurely during the service period. Polyvinyl alcohol (PVA) fiber-reinforced engineered cementitious composite (ECC) is a kind of high ductility concrete material, and its ultimate uniaxial tensile strain is more than 3%. It can be used to improve the damage status of expansion joints. Based on previous research results, ECCs were used in the pilot project of bridge expansion joints. Under this engineering background, the shear load-displacement curves of ECC expansion joints were studied through 27 groups of compression-shear tests of ECC/steel composite structures. The shear failure characteristics of ECC expansion joints were analyzed by the digital image correlation method. A shear load-displacement curve model of the composite structures was proposed based on the equivalent strain assumption and Weibull distribution theory. The results show that the failure mode of the composite structure specimens was ECC shear cracking. Stress and strain field nephograms were used to explain the failure characteristics of the composite structure specimens. The calculated curves of the shear load-displacement model of the composite structures were in good agreement with the experimental curves. The work is of great importance to the shear design of ECC expansion joints and their further engineering applications.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3796
Author(s):  
Qiang Du ◽  
Changlu Cai ◽  
Jing Lv ◽  
Jiao Wu ◽  
Ting Pan ◽  
...  

This study investigated fundamental mechanical properties of a basalt fiber reinforced engineered cementitious composite (BF-ECC) with different volume fractions of basalt fiber (BF), water–binder ratio (W/B) and fly ash (FA) content. The compressive strength, splitting tensile strength, flexural strength and static modulus of BF-ECC were studied at 3, 28 and 56 days, respectively, to explore their development along the ages. Furthermore, the scanning electron microscopy (SEM) analysis was conducted to evaluate the microstructure of BF-ECC. Experiment results demonstrated that bond quality between the BF and the matrix is good, which leads to a significant increase in the flexural strength and splitting tensile strength. The pozzolanic effect of FA obviously improved the splitting tensile and flexural strength of BF-ECC after 56 days of curing, and the appropriate content of the FA content in the BF-ECC ranges from 50% to 60%.


Sign in / Sign up

Export Citation Format

Share Document