Dimensional response analysis of rocking wall-frame building structures with control devices subjected to near-fault pulse-like ground motions

2020 ◽  
Vol 220 ◽  
pp. 110842
Author(s):  
Guiqiang Guo ◽  
Leibo Qin ◽  
Dixiong Yang ◽  
Yunhe Liu
2014 ◽  
Vol 875-877 ◽  
pp. 998-1002
Author(s):  
Wei Bing Luo ◽  
Ji Ming Fan ◽  
Ji Lv ◽  
Li Ya Zhang ◽  
Cui Cui Wu

The seismic responses under the action of far-fault and near-fault ground motions of the bridge tower structure of the long-span cable-stayed bridge are numerically discussed by means of the model of the bottom consolidation of the column. The results show that the responses of tower of the cable-stayed bridge correlate well with the properties of the ground motions. The seismic responses of the model have much larger values under the near-fault velocity pulse-like ground motions than those of the counterpart. The frequency of system reduces as the flexibility of structure decreases because of the rigid foundation; The displace response of tower shows that the rigid foundation has little influence on the seismic response of the cable-stayed bridge, while the acceleration response of the tower implies that rigid foundation has adverse effect. Thus, consideration of the soil-pile-superstructure interaction can be meaningful both in theory and reality during the seismic design of long-span cable-stayed bridge structure.


2019 ◽  
Vol 35 (2) ◽  
pp. 759-786 ◽  
Author(s):  
Karim Tarbali ◽  
Brendon A. Bradley ◽  
Jack W. Baker

This paper focuses on the selection of ground motions for seismic response analysis in the near-fault region, where directivity effects are significant. An approach is presented to consider forward directivity velocity pulse effects in seismic hazard analysis without separate hazard calculations for ‘pulse-like’ and ‘non-pulse-like’ ground motions, resulting in a single target hazard (at the site of interest) for ground motion selection. The ability of ground motion selection methods to appropriately select records that exhibit pulse-like ground motions in the near-fault region is then examined. Applications for scenario and probabilistic seismic hazard analysis cases are examined through the computation of conditional seismic demand distributions and the seismic demand hazard. It is shown that ground motion selection based on an appropriate set of intensity measures (IMs) will lead to ground motion ensembles with an appropriate representation of the directivity-included target hazard in terms of IMs, which are themselves affected by directivity pulse effects. This alleviates the need to specify the proportion of pulse-like motions and their pulse periods a priori as strict criteria for ground motion selection.


Sign in / Sign up

Export Citation Format

Share Document