Seismic response of a tuned viscous mass damper (TVMD) coupled wall system

2020 ◽  
Vol 225 ◽  
pp. 111252
Author(s):  
Xiaodong Ji ◽  
Yuhao Cheng ◽  
Carlos Molina Hutt
2021 ◽  
Vol 240 ◽  
pp. 112307
Author(s):  
Xiaodong Ji ◽  
Junshan Zhang ◽  
Kohju Ikago ◽  
Sanjukta Chakraborty ◽  
Hideto Kanno

1976 ◽  
Vol 102 (9) ◽  
pp. 1759-1780 ◽  
Author(s):  
Stephen A. Mahin ◽  
Vitelmo V. Bertero

2018 ◽  
Vol 22 (6) ◽  
pp. 1284-1296 ◽  
Author(s):  
Yong Li ◽  
Ye Liu ◽  
Shaoping Meng

Coupled wall systems are often used in high-rise buildings in zone of high seismic risk to provide lateral resistance to earthquake loading. Once damaged, reinforced concrete coupling beams are costly and time-consuming to repair post-earthquake. To enhance the seismic resilience for coupled wall structures, a novel replaceable steel truss coupling beam is first introduced. The proposed replaceable steel truss coupling beam consists of chord members at the top and bottom, respectively, and two buckling-restrained energy dissipaters are employed in the diagonal direction. The energy dissipaters can yield first before the wall piers and dissipate large amounts of energy to protect the main structure under seismic loadings. In addition, the energy dissipaters can be easily installed and post-earthquake repaired through pin connection with the chord members. This article mainly focused on the numerical and theoretical analyses of the proposed replaceable steel truss coupling beam, and nonlinear analytical models were developed in PERFORM-3D. An 11-story prototype structure was designed per Chinese code. The seismic response of hybrid coupled wall system with replaceable steel truss coupling beams was evaluated using nonlinear time history analysis and compared with the response of reinforced concrete coupled wall system with reinforced concrete coupling beams under seismic loadings. Results show that the proposed replaceable steel truss coupling beam leads to a good seismic response with reduced interstory drifts of the systems and rotational demand in the beams and wall piers due to a large energy dissipation capacity and overstrength.


Tuned mass dampers (TMD) are one of the most reliable devices to control the vibration of the structure. The optimum mass ratio required for a single tuned mass damper (STMD) is evaluated corresponding to the fundamental natural frequency of the structure. The effect of STMD and Multiple tuned mass dampers (MTMD) on a G+20 storey structure are studied to demonstrate the damper’s effectiveness in seismic application. The location and number of tuned mass dampers are studied to give best structural performance in maximum reduction of seismic response for El Centro earthquake data. The analysis results from SAP 2000 software tool shows damper weighing 2.5% of the total weight of the structure effectively reduce the response of the structure. Study shows that introduction of 4-MTMD at top storey can effectively reduce the response by 10% more in comparison to single tuned mass damper. The use of MTMD of same mass ratio that of STMD is more effective in seismic response.


Sign in / Sign up

Export Citation Format

Share Document