Experimental study on circular steel tube-confined reinforced UHPC columns under axial loading

2021 ◽  
Vol 230 ◽  
pp. 111599
Author(s):  
Jiangang Wei ◽  
Zhitao Xie ◽  
Wei Zhang ◽  
Xia Luo ◽  
Yan Yang ◽  
...  
2012 ◽  
Vol 204-208 ◽  
pp. 2878-2882 ◽  
Author(s):  
Miao Zhou ◽  
Jian Wei Li ◽  
Jing Min Duan

This paper carries out a series of experimental study on 6 column specimens, analyses and compares with the different parameters on the axial loading tests of RC columns and RC columns strengthened with steel tube. The experimental results show that the RC columns strengthened with steel tube take full advantage of loading properties of both materials, thus greatly improve the bearing capacity of specimens. With the same wall thickness steel tube, the improving degree of bearing capacity of long columns is bigger than the short columns, and the reinforcement effect is more obvious. The experimental results can offer reference for scientific research and engineering staff, and promote this reinforcement method to be widely used in engineering practice.


2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Qin Rong ◽  
Yusheng Zeng ◽  
Lanhui Guo ◽  
Xiaomeng Hou ◽  
Wenzhong Zheng

Results from mechanical tests on thirteen reactive powder concrete- (RPC-) filled circular steel tube (RFCT) columns under monotonic and cyclic axial loading are presented in this paper. The test variables include monotonic and cyclic loadings, confinement coefficient, and diameter of the steel tube. The test results show that the envelope curves of specimens under cyclic loading were similar to the load-deformation curves of the specimens under monotonic loading. Confinement coefficient had a significant influence on the failure modes of RFCT columns. With an increase in confinement coefficient of 0.53 to 0.98, the failure mode transformed from shear failure to compressive failure for specimens under monotonic and cyclic loading. In the elastic stage, no confining effect was provided by the steel tube to the RPC since Poisson’s ratio of steel was larger than the transverse deformation coefficient of RPC. Beyond the elastic stage, the axial compressive strength and ultimate strain of RPC increased significantly due to the confining effect when compared to unconfined RPC. Stress of the steel tube and RPC was investigated by using an elastic-plastic analytical model. Before yielding of the steel tube, stress development in the tube was faster in the longitudinal direction than in the hoop direction. The results of the experiment indicate that the compressive strength of RPC could be predicted by Mander’s model for confined concrete. Based on Mander’s model, an equation is extended to calculate the axial compressive strength of RFCT columns, and the predicted results are in good agreement with the test results. Based on comparative analysis of 180 RFCT columns axial compressive tests, the equation given by EC4 considering the confinement effect can be applied to predict the compressive strength of RFCT columns.


Structures ◽  
2018 ◽  
Vol 16 ◽  
pp. 101-111 ◽  
Author(s):  
Baraa J.M. AL-Eliwi ◽  
Talha Ekmekyapar ◽  
Mohanad I.A. AL-Samaraie ◽  
M. Hanifi Doğru

2018 ◽  
Vol 125 ◽  
pp. 107-118 ◽  
Author(s):  
Fa-xing Ding ◽  
De-ren Lu ◽  
Yu Bai ◽  
Yong-zhi Gong ◽  
Zhi-wu Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document