Experimental investigation on stress concentration factors of cold-formed high strength steel tubular X-joints

2021 ◽  
Vol 243 ◽  
pp. 112408
Author(s):  
Madhup Pandey ◽  
Ben Young
1964 ◽  
Vol 86 (4) ◽  
pp. 709-717 ◽  
Author(s):  
J. H. Mulherin ◽  
D. F. Armiento ◽  
H. Markus

For the case of an elliptical notch in an infinite solid, a relationship between the stress concentration factor and the fracture toughness parameter was examined. Edge-notched specimens from three high-strength aluminum alloys were tensile loaded to failure. The resulting data were analyzed in the light of this relationship. It was indicated that a predicted proportionality between the fracture toughness parameter and the square root of the notch root radius exists. Further examination of the relationship based upon the proportionality showed that fracture occurs at a fixed state of strain within a plastic zone having a size proportional to the original root radius. However, a departure from the predicted behavior was evident with the introduction of plane strain components at the notch root. It was also demonstrated that the use of specimens with intermediate root radii for either the evaluation of a single material or as a basis of comparison between materials can lead to invalid conclusions. The reversion of fracture toughness data from blunt notch specimens to stress concentration factors is shown for one alloy. Due to a constancy in the ratio of the fracture parameter to the nominal stress, the resulting factor lacks sensitivity.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 546
Author(s):  
Krzysztof L. Molski ◽  
Piotr Tarasiuk

The paper deals with the problem of stress concentration at the weld toe of a plate T-joint subjected to axial, bending, and shearing loading modes. Theoretical stress concentration factors were obtained from numerical simulations using the finite element method for several thousand geometrical cases, where five of the most important geometrical parameters of the joint were considered to be independent variables. For each loading mode—axial, bending, and shearing—highly accurate closed form parametric expression has been derived with a maximum percentage error lower than 2% with respect to the numerical values. Validity of each approximating formula covers the range of dimensional proportions of welded plate T-joints used in engineering applications. Two limiting cases are also included in the solutions—when the weld toe radius tends to zero and the main plate thickness becomes infinite.


Sign in / Sign up

Export Citation Format

Share Document