Numerical study of reinforced concrete coupled shear walls based on a two-dimensional finite element model

2021 ◽  
Vol 244 ◽  
pp. 112792
Author(s):  
Zi-Yu Zhang ◽  
Ran Ding ◽  
Jian-Sheng Fan ◽  
Mu-Xuan Tao ◽  
Xin Nie
2017 ◽  
Vol 23 (3) ◽  
pp. 431-440 ◽  
Author(s):  
Mohsen Beigi

An experimental and numerical study was conducted to investigate the process of potato slices drying. For simulating the moisture transfer in the samples and predict the dehydration curves, a two-dimensional finite element model was developed and programmed in Compaq Visual Fortran, version 6.5. The model solved the Fick?s second law for slab in a shrinkage system to calculate the unsteady two-dimensional moisture transmission in rectangular coordinates (x,y). Moisture diffusivity and moisture transfer coefficient were determined by minimizing the sum squares of residuals between experimental and numerical predicted data. Shrinkage kinetics of the potato slices during dehydration was determined experimentally and found to be a linear function of removed moisture. The determined parameters were used in the mathematical model. The predicted moisture content values were compared to the experimental data and the validation results demonstrated that the dynamic drying curves were predicted by the methodology very well.


1995 ◽  
Vol 22 (1) ◽  
pp. 55-71
Author(s):  
Y. Ouellet ◽  
A. Khelifa ◽  
J.-F. Bellemare

A numerical study based on a two-dimensional finite element model has been conducted to analyze flow conditions associated with different possible designs for the reopening of Havre aux Basques lagoon, located in Îles de la Madeleine, in the middle of the Gulf of St. Lawrence. More specifically, the study has been done to better define the depth and geometry of the future channel as well as its orientation with regard to tidal flows within the inlet and the lagoon. Results obtained from the model have been compared and analyzed to put forward some recommendations about choice of a design insuring the stability of the inlet with tidal flows. Key words: numerical model, finite element, lagoon, reopening, Havre aux Basques, Îles de la Madeleine.


1997 ◽  
Vol 82 (6) ◽  
pp. 2036-2044 ◽  
Author(s):  
Andreas O. Frank ◽  
C. J. Charles Chuong ◽  
Robert L. Johnson

Frank, Andreas O., C. J. Charles Chuong, and Robert L. Johnson. A finite-element model of oxygen diffusion in the pulmonary capillaries. J. Appl. Physiol. 82(6): 2036–2044, 1997.—We determined the overall pulmonary diffusing capacity (Dl) and the diffusing capacities of the alveolar membrane (Dm) and the red blood cell (RBC) segments (De) of the diffusional pathway for O2 by using a two-dimensional finite-element model developed to represent the sheet-flow characteristics of pulmonary capillaries. An axisymmetric model was also considered to assess the effect of geometric configuration. Results showed the membrane segment contributing the major resistance, with the RBC segment resistance increasing as O2 saturation ([Formula: see text]) rises during the RBC transit: RBC contributed 7% of the total resistance at the capillary inlet ([Formula: see text] = 75%) and 30% toward the capillary end ([Formula: see text] = 95%) for a 45% hematocrit (Hct). Both Dm and Dlincreased as the Hct increased but began approaching a plateau near an Hct of 35%, due to competition between RBCs for O2 influx. Both Dm and Dl were found to be relatively insensitive (2∼4%) to changes in plasma protein concentration (28∼45%). Axisymmetric results showed similar trends for all Hct and protein concentrations but consistently overestimated the diffusing capacities (∼2.2 times), primarily because of an exaggerated air-tissue barrier surface area. The two-dimensional model correlated reasonably well with experimental data and can better represent the O2 uptake of the pulmonary capillary bed.


Sign in / Sign up

Export Citation Format

Share Document