moisture diffusivity
Recently Published Documents


TOTAL DOCUMENTS

477
(FIVE YEARS 138)

H-INDEX

37
(FIVE YEARS 4)

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 114
Author(s):  
Antai Chang ◽  
Xia Zheng ◽  
Hongwei Xiao ◽  
Xuedong Yao ◽  
Decheng Liu ◽  
...  

The main objective of the present work was to study the drying kinetics and obtain the optimum process parameters of cantaloupe slices using short-and medium-wave infrared radiation (SMIR) drying technology. The effect of three independent variables of infrared radiation temperature (55–65 °C), slice thickness (5–9 mm) and radiation distance (80–160 mm) on the L value, color difference (∆E), hardness and vitamin C content were investigated by using the Response Surface Methodology (RSM). The results showed that the Page model can adequately predict the moisture content between 55 and 65 °C (R2 > 0.99). The effective moisture diffusivity (Deff) varied from 5.26 × 10−10 to 2.09 × 10−9 m2/s and the activation energy (Ea) of the SMIR drying was 31.84 kJ/mol. Infrared radiation temperature and slice thickness exerted extremely significant effects on L value and color difference (ΔE) (p < 0.01), with higher infrared radiation temperature and thin slice thickness leading to a decrease in the L value and an increase in ΔE. Hardness and vitamin C content were significantly affected by infrared radiation temperature, slice thickness and radiation distance, of which the slice thickness was the most distinct factor affecting the hardness value. Higher infrared radiation temperature and larger slice thickness and radiation distance resulted in higher vitamin C degradation. For the given constraints (maximized vitamin C content and L value, minimized ΔE and hardness value), the optimum drying parameters were infrared radiation temperature 58.2 °C, slice thickness 6 mm and radiation distance 90 mm. Under the optimum drying combination conditions, the experimental values were 65.58 (L value), 8.57 (∆E), 10.49 N (hardness) and 106.58 mg/100 g (vitamin C content), respectively. This study is beneficial to the development of the cantaloupe food processing industry and provides more insights for the application of SMIR drying technology to improve the drying rate and product quality of cantaloupe.


2022 ◽  
Vol 52 (1) ◽  
pp. 49-54
Author(s):  
Farhad Khoshnam

The present work aimed mainly at investigating the influence of tissue structure on dehydration characteristics of zucchini and carrot. Microwave power levels of 100, 350, 550 and 750 W used to dehydrate the samples with thicknesses of 3, 5, 7 and 9 mm. The results showed that moisture removal from the slices occurred in a short accelerating period at the process beginning followed by a falling rate period. The moisture diffusivity increased with both increasing microwave power and the samples thickness where the average values for zucchini and carrot slices changed from 1.17×10-8 to 9.42×10-8 and from 0.73×10-8 to 5.51×10-8 m2 s-1, respectively. The average activation energy for zucchini and carrot slices varied in the range of 1.22–1.68 and 1.57–1.84 W g-1, respectively and decreased with increasing samples thickness.


2022 ◽  
Vol 52 (1) ◽  
pp. 43-48
Author(s):  
Ibrahim Doymaz

The effect of different infrared (IR) powers on drying of orange slices was investigated in infrared dryer. The orange slices dried at 62, 74 and 88 W infrared powers and constant slice thickness of 6 mm. Results showed that drying, colour and rehydration characteristics of orange slices were greatly influenced by infrared power. The drying data were fitted with five mathematical models available in the literature. Based on the statistical tests applied to make an assessment, the model of Midilli and Kucuk was found to satisfactorily explain drying kinetics of orange slices for all drying conditions. The Fick’s diffusion model was used to calculate the effective moisture diffusivity (Deff) of orange slices. The value of Deff varied from 1.59×10-10 to 2.49×10-10 m2/s. It was found that the effective moisture diffusivities increased with increasing IR power. Activation energy was estimated by a modified Arrhenius type equation as 2.11 kW/kg. As the infrared power increased, the rehydration ratio was found to be reduced. Furthermore, with increase of infrared power, the values of a and DE increased, whereas the values of L, b and C decreased.


Author(s):  
J. Isa ◽  
O. I. Majasan ◽  
K. A. Jimoh

During milling of cereal grains, bran which is separated from the starchy endosperm of the grain is a major by-product. In this study, milled sorghum residue was dried in a cabinet dryer under different conditions (temperature and air velocity). The obtained drying data were fitted into ten existing mathematical models and obtained the best model while, the effective moisture diffusivity and activation energy of the drying process was determined using Arrhenius type approach. The result shows that the initial moisture content obtained for the sorghum residue using standard oven drying method were 41.28 ± 0.33%, 49.52 ± 0.63 % and 47.06 ± 0.42 % on wet basis for the wet residue of variety A, B and C, respectively, at equilibrium point, the final moisture content of about 12.93 ± 0.14 – 14.31± 0.07 as temperature ranges from 40 oC to 70 oC and air velocity ranges from 0.8 m/s to 1.2 m/s. During the drying process, the drying rate falls more rapidly as it was initially high as a result of more moisture in the sorghum residue and the drying rate decreases slowly until reaching the reduced moisture content. The obtained values of effective moisture diffusivity (Deff) ranges between 9.89 x 10-10 and 22.21 x 10-10 m2/s, 9.45 x 10-10 and 20.62 x 10-10 m2/s and 8.56 x 10-10 and 20.76 x 10-10 m2/s for variety A, B and C, respectively. However, the result of the modelling shows that the drying characteristics of variety A and B of the sorghum residue can be predicted using Midilli et al. model while the drying behaviour of Variety C can be predicted using Hii et al. model.


Author(s):  
Mohamad Mehdi Heydari ◽  
Tahereh Najib ◽  
Oon-Doo Baik ◽  
Kaiyang Tu ◽  
Venkatesh Meda

Author(s):  
Siti Asmaniyah Mardiyani ◽  
Sumardi Hadi Sumarlan ◽  
Bambang Dwi Argo ◽  
Amin Setyo Leksono

Moisture diffusivity and activation energy are two important variables in a drying process to understand a certain product's drying behavior. This study aimed to determine the value of effective moisture diffusivity and the activation energy of red pepper in a conventional forced convective drying based on electricity (conventional convective drying/CCD) and forced convective drying based on solar energy (convective solar drying/CSD). The value of effective moisture diffusivity was determined using the equation, which refers to Fick’s second law. The Arrhenius equation determines the activation energy value as a model of the relationship of inverse temperature and the normal logarithmic value of effective moisture diffusivity. The results showed that the values of effective moisture diffusivity of CCD 70 °C were the highest. The regression analysis between the drying layers (X), and effective moisture diffusivity (Y) showed a polynomial pattern with a coefficient determination R2 value of 0.85 (CCD 70 °C), 0.81 (CCD 60 °C), 0.88 (CCD 50 °C), and 0.48 (CSD). (R2) The higher moisture diffusivity values in CCD indicated that the drying systems are more stable than CSD. The drying activation energy calculation showed that the value of CCD's activation energy was 36.36 kJ/mol.K, while the value of CSD's activation energy was 31.28 kJ/mol.K. Those results were consistent with the results of the previous studies.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nan Wang ◽  
Shuaiyao Yang ◽  
Yifu Zhang ◽  
Lan Jiang ◽  
Xuechao Zheng ◽  
...  

Abstract Industrially, the use of far-infrared (FIR) as a heat source for drying daylily presents some issues, such as high energy consumption and large loss of nutrients. The use of mid-infrared (MIR) was performed to study the drying of daylily to explore its advantages, with the FIR drying as a comparison. Drying models were established by the drying kinetics, and the changes of nutrition, rehydration ratio (RR) and water migration pattern were researched. The results showed the best-fitting drying model was the Modified Henderson and Pabis model. Under the same temperature, compared with FIR drying, the drying time of MIR drying was shortened by 50%, the effective moisture diffusivity (D eff) was increased by 103%, the drying activation energy (E a) was reduced by 10%, the reducing sugar and ascorbic acid retention rate was increased by 13.9% and 9.7%, respectively. The MIR drying had better RR and water migration characteristics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lahcen Hssaini ◽  
Rachida Ouaabou ◽  
Hafida Hanine ◽  
Rachid Razouk ◽  
Ali Idlimam

AbstractFirst convectional thin layer drying of two fig (Ficus carica L.) varieties growing in Moroccan, using partially indirect convective dryer, was performed. The experimental design combined three air temperatures levels (60, 70 and 80 °C) and two air-flow rates (150 and 300 m3/h). Fig drying curve was defined as a third-order polynomial equation linking the sample moisture content to the effective moisture diffusivity. The average activation energy was ranged between 4699.41 and 7502.37 kJ/kg. It raised proportionally with the air flow velocity, and the same pattern were observed for effective moisture diffusivity regarding drying time and velocity. High levels of temperature (80 °C) and velocity (300 m3/h) lead to shorten drying time (200 min) and improve the slices physical quality. Among the nine tested models, Modified Handerson and Pabis exhibited the highest correlation coefficient value with the lowest chi-square for both varieties, and then give the best prediction performance. Energetic investigation of the dryer prototype showed that the total use of energy alongside with the specific energy utilization (13.12 and 44.55 MWh/kg) were inversely proportional to the velocity and drying temperature. Likewise, the energy efficiency was greater (3.98%) higher in drying conditions.


Sign in / Sign up

Export Citation Format

Share Document