Précis of gap test results requiring reappraisal of line crack and phase-field models of fracture mechanics

2022 ◽  
Vol 250 ◽  
pp. 113285
Author(s):  
Zdeněk P. Bažant ◽  
A. Abdullah Dönmez ◽  
Hoang T. Nguyen
2020 ◽  
Vol 117 (25) ◽  
pp. 14015-14020 ◽  
Author(s):  
Hoang Nguyen ◽  
Madura Pathirage ◽  
Masoud Rezaei ◽  
Mohsen Issa ◽  
Gianluca Cusatis ◽  
...  

The line crack models, including linear elastic fracture mechanics (LEFM), cohesive crack model (CCM), and extended finite element method (XFEM), rest on the century-old hypothesis of constancy of materials’ fracture energy. However, the type of fracture test presented here, named the gap test, reveals that, in concrete and probably all quasibrittle materials, including coarse-grained ceramics, rocks, stiff foams, fiber composites, wood, and sea ice, the effective mode I fracture energy depends strongly on the crack-parallel normal stress, in-plane or out-of-plane. This stress can double the fracture energy or reduce it to zero. Why hasn’t this been detected earlier? Because the crack-parallel stress in all standard fracture specimens is negligible, and is, anyway, unaccountable by line crack models. To simulate this phenomenon by finite elements (FE), the fracture process zone must have a finite width, and must be characterized by a realistic tensorial softening damage model whose vectorial constitutive law captures oriented mesoscale frictional slip, microcrack opening, and splitting with microbuckling. This is best accomplished by the FE crack band model which, when coupled with microplane model M7, fits the test results satisfactorily. The lattice discrete particle model also works. However, the scalar stress–displacement softening law of CCM and tensorial models with a single-parameter damage law are inadequate. The experiment is proposed as a standard. It represents a simple modification of the three-point-bend test in which both the bending and crack-parallel compression are statically determinate. Finally, a perspective of various far-reaching consequences and limitations of CCM, LEFM, and XFEM is discussed.


2021 ◽  
Vol 349 ◽  
pp. 02001
Author(s):  
Aris Tsakmakis ◽  
Michael Vormwald

Phase field models have been successfully applied in recent years to a variety of fracture mechanics problems, such as quasi-brittle materials, dynamic fracture mechanics, fatigue cracks in brittle materials, as well as ductile materials. The basic idea of the method is to introduce an additional term in the energy functional describing the state of material bodies. A new state variable is included in this term, the so-called phase field, and enables to determine the surface energy of the crack. This approach allows to model phenomena such as crack initiation, crack branching and buckling of cracks, as well as the modelling of the crack front in three-dimensional geometries, without further assumptions. There is yet no systematic investigation of the influence of strain hardening on crack development within the phase field method. Thus, the aim of the paper is to provide an analysis of the effect of kinematic and isotropic hardening on the evolution of the phase field variable.


2017 ◽  
Vol 17 (4) ◽  
pp. 661-678 ◽  
Author(s):  
Harbir Antil ◽  
Sören Bartels

AbstractFractional differential operators provide an attractive mathematical tool to model effects with limited regularity properties. Particular examples are image processing and phase field models in which jumps across lower dimensional subsets and sharp transitions across interfaces are of interest. The numerical solution of corresponding model problems via a spectral method is analyzed. Its efficiency and features of the model problems are illustrated by numerical experiments.


2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Zhan Chen

AbstractIn this work, the existence of a global minimizer for the previous Lagrangian formulation of nonpolar solvation model proposed in [1] has been proved. One of the proofs involves a construction of a phase field model that converges to the Lagrangian formulation. Moreover, an Eulerian formulation of nonpolar solvation model is proposed and implemented under a similar parameterization scheme to that in [1]. By doing so, the connection, similarity and difference between the Eulerian formulation and its Lagrangian counterpart can be analyzed. It turns out that both of them have a great potential in solvation prediction for nonpolar molecules, while their decompositions of attractive and repulsive parts are different. That indicates a distinction between phase field models of solvation and our Eulerian formulation.


Sign in / Sign up

Export Citation Format

Share Document