Polyamine-producing bacterium Bacillus megaterium N3 reduced Cd accumulation in wheat and increased the expression of DNA repair- and plant hormone- related proteins in wheat roots

Author(s):  
Shanmei Qin ◽  
Xuejiao Wu ◽  
Hui Han ◽  
Fahu Pang ◽  
Jun Zhang ◽  
...  
Microbiology ◽  
2005 ◽  
Vol 151 (3) ◽  
pp. 775-787 ◽  
Author(s):  
Hannes Nahrstedt ◽  
Christine Schröder ◽  
Friedhelm Meinhardt

Isolation and subsequent knockout of a recA-homologous gene in Bacillus megaterium DSM 319 resulted in a mutant displaying increased sensitivity to mitomycin C. However, this mutant did not exhibit UV hypersensitivity, a finding which eventually led to identification of a second functional recA gene. Evidence for recA duplicates was also obtained for two other B. megaterium strains. In agreement with potential DinR boxes located within their promoter regions, expression of both genes (recA1 and recA2) was found to be damage-inducible. Transcription from the recA2 promoter was significantly higher than that of recA1. Since a recA2 knockout could not be achieved, functional complementation studies were performed in Escherichia coli. Heterologous expression in a RecA null mutant resulted in increased survival after UV irradiation and mitomycin C treatment, proving both recA gene products to be functional in DNA repair. Thus, there is evidence for an SOS-like pathway in B. megaterium that differs from that of Bacillus subtilis.


2019 ◽  
Vol 72 ◽  
pp. 195-204
Author(s):  
Mana Kanjanamaneesathian ◽  
Wasunan Nimanong

The bacterium Bacillus megaterium can be used to biologically control sheath blight and grain discoloration in rice. Large-scale inoculations using liquid cultures are cumbersome so the efficacy of an alternative, paper-based system was examined. Bacterial endospores were embedded on filter papers and multiplied using a simple culture technique. The resulting suspension was used to pre-soak yardlong bean and cucumber seeds before sowing to assess its effect on seed germination and weight. The efficacy of the bacterium in protecting cucumber seeds from pre-emergent damping-off was also examined. The population of bacteria embedded in paper declined initially but remained stable for 150 days at room temperature. Bacterial culture reduced seed germination of cucumber and seedling weight of yardlong beans. Dilution with water either increased or reduced germination of cucumber seeds depending on concentration. A 1:10 v/v dilution increased cucumber-seed germination in a pre-emergent damping-off pot test but all seedlings later died, irrespective of treatment. Paper-based inoculum has the potential to replace liquid inoculum but further work is required to optimise the concentrations of the bacterial culture to achieve disease control without adversely affecting the host plant.


2020 ◽  
Vol 52 ◽  
pp. 102116
Author(s):  
Saeed Mahdavi ◽  
Jafar Razeghi ◽  
Maghsoud Pazhouhandeh ◽  
Ali Movafeghi ◽  
Morteza Kosari-Nasab ◽  
...  

2006 ◽  
Vol 38 (7) ◽  
pp. 1013-1016 ◽  
Author(s):  
Marcus Taupp ◽  
Frank Heckel ◽  
Dag Harmsen ◽  
Peter Schreier

2013 ◽  
Vol 32 (7) ◽  
pp. 1043-1052 ◽  
Author(s):  
Mattia Donà ◽  
Anca Macovei ◽  
Matteo Faè ◽  
Daniela Carbonera ◽  
Alma Balestrazzi

2019 ◽  
Vol 47 (16) ◽  
pp. 8521-8536 ◽  
Author(s):  
Rogelio Hernández-Tamayo ◽  
Luis M Oviedo-Bocanegra ◽  
Georg Fritz ◽  
Peter L Graumann

AbstractDNA replication forks are intrinsically asymmetric and may arrest during the cell cycle upon encountering modifications in the DNA. We have studied real time dynamics of three DNA polymerases and an exonuclease at a single molecule level in the bacterium Bacillus subtilis. PolC and DnaE work in a symmetric manner and show similar dwell times. After addition of DNA damage, their static fractions and dwell times decreased, in agreement with increased re-establishment of replication forks. Only a minor fraction of replication forks showed a loss of active polymerases, indicating relatively robust activity during DNA repair. Conversely, PolA, homolog of polymerase I and exonuclease ExoR were rarely present at forks during unperturbed replication but were recruited to replications forks after induction of DNA damage. Protein dynamics of PolA or ExoR were altered in the absence of each other during exponential growth and during DNA repair, indicating overlapping functions. Purified ExoR displayed exonuclease activity and preferentially bound to DNA having 5′ overhangs in vitro. Our analyses support the idea that two replicative DNA polymerases work together at the lagging strand whilst only PolC acts at the leading strand, and that PolA and ExoR perform inducible functions at replication forks during DNA repair.


2019 ◽  
Vol 26 (8) ◽  
pp. 1494-1505 ◽  
Author(s):  
Alina Minias ◽  
Anna Brzostek ◽  
Jarosław Dziadek

Infections with Mycobacterium tuberculosis, the causative agent of tuberculosis, are difficult to treat using currently available chemotherapeutics. Clinicians agree on the urgent need for novel drugs to treat tuberculosis. In this mini review, we summarize data that prompts the consideration of DNA repair-associated proteins as targets for the development of new antitubercular compounds. We discuss data, including gene expression data, that highlight the importance of DNA repair genes during the pathogenic cycle as well as after exposure to antimicrobials currently in use. Specifically, we report experiments on determining the essentiality of DNA repair-related genes. We report the availability of protein crystal structures and summarize discovered protein inhibitors. Further, we describe phenotypes of available gene mutants of M. tuberculosis and model organisms Mycobacterium bovis and Mycobacterium smegmatis. We summarize experiments regarding the role of DNA repair-related proteins in pathogenesis and virulence performed both in vitro and in vivo during the infection of macrophages and animals. We detail the role of DNA repair genes in acquiring mutations, which influence the rate of drug resistance acquisition.


Sign in / Sign up

Export Citation Format

Share Document