scholarly journals In-situ monitoring of the unstable bacterial adhesion process during wastewater biofilm formation: A comprehensive study

2020 ◽  
Vol 140 ◽  
pp. 105722 ◽  
Author(s):  
Jinfeng Wang ◽  
Qiuju Liu ◽  
Deyuan Dong ◽  
Haidong Hu ◽  
Bing Wu ◽  
...  
2020 ◽  
Vol 135 ◽  
pp. 105326 ◽  
Author(s):  
Jinfeng Wang ◽  
Qiuju Liu ◽  
Xianhui Li ◽  
Sijia Ma ◽  
Haidong Hu ◽  
...  

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Hervé Straub ◽  
Leo Eberl ◽  
Manfred Zinn ◽  
René M. Rossi ◽  
Katharina Maniura-Weber ◽  
...  

Abstract Background Studying bacterial adhesion and early biofilm development is crucial for understanding the physiology of sessile bacteria and forms the basis for the development of novel antimicrobial biomaterials. Microfluidics technologies can be applied in such studies since they permit dynamic real-time analysis and a more precise control of relevant parameters compared to traditional static and flow chamber assays. In this work, we aimed to establish a microfluidic platform that permits real-time observation of bacterial adhesion and biofilm formation under precisely controlled homogeneous laminar flow conditions. Results Using Escherichia coli as the model bacterial strain, a microfluidic platform was developed to overcome several limitations of conventional microfluidics such as the lack of spatial control over bacterial colonization and allow label-free observation of bacterial proliferation at single-cell resolution. This platform was applied to demonstrate the influence of culture media on bacterial colonization and the consequent eradication of sessile bacteria by antibiotic. As expected, the nutrient-poor medium (modified M9 minimal medium) was found to promote bacterial adhesion and to enable a higher adhesion rate compared to the nutrient-rich medium (tryptic soy broth rich medium ). However, in rich medium the adhered cells colonized the glass surface faster than those in poor medium under otherwise identical conditions. For the first time, this effect was demonstrated to be caused by a higher retention of newly generated bacteria in the rich medium, rather than faster growth especially during the initial adhesion phase. These results also indicate that higher adhesion rate does not necessarily lead to faster biofilm formation. Antibiotic treatment of sessile bacteria with colistin was further monitored by fluorescence microscopy at single-cell resolution, allowing in situ analysis of killing efficacy of antimicrobials. Conclusion The platform established here represents a powerful and versatile tool for studying environmental effects such as medium composition on bacterial adhesion and biofilm formation. Our microfluidic setup shows great potential for the in vitro assessment of new antimicrobials and antifouling agents under flow conditions.


2016 ◽  
Vol 65 (7) ◽  
pp. 596-604 ◽  
Author(s):  
Ali Al-Ahmad ◽  
Lamprini Karygianni ◽  
Max Schulze Wartenhorst ◽  
Maria Bächle ◽  
Elmar Hellwig ◽  
...  

2018 ◽  
Vol 334 ◽  
pp. 2134-2141 ◽  
Author(s):  
Jinfeng Wang ◽  
Hongqiang Ren ◽  
Xianhui Li ◽  
Jianxin Li ◽  
Lili Ding ◽  
...  

2018 ◽  
Vol 43 (1) ◽  
pp. E37-E52 ◽  
Author(s):  
DAM Dutra ◽  
GKR Pereira ◽  
KZ Kantorski ◽  
LF Valandro ◽  
FB Zanatta

SUMMARY Biofilm (bacterial plaque) accumulation on the surface of restorative materials favors the occurrence of secondary caries and periodontal inflammation. Surface characteristics of restorations can be modified by finishing and/or polishing procedures and may affect bacterial adhesion. The aim of this systematic review was to characterize how finishing and polishing methods affect the surface properties of different restorative materials with regard to bacterial adhesion and biofilm formation. Searches were carried out in MEDLINE-PubMed, EMBASE, Cochrane-CENTRAL, and LILACS databases. From 2882 potential articles found in the initial searches, only 18 met the eligible criteria and were included in this review (12 with in vitro design, four with in situ design, and two clinical trials). However, they presented high heterogeneity regarding materials considered and methodology for evaluating the desired outcome. Risk bias analysis showed that only two studies presented low risk (whereas 11 showed high and five showed medium risk). Thus, only descriptive analyses considering study design, materials, intervention (finishing/polishing), surface characteristics (roughness and surface free energy), and protocol for biofilm formation (bacterial adhesion) could be performed. Some conclusions could be drawn: the impact of roughness on bacterial adhesion seems to be related not to a roughness threshold (as previously believed) but rather to a range, the range of surface roughness among different polishing methods is wide and material dependent, finishing invariably creates a rougher surface and should always be followed by a polishing method, each dental material requires its own treatment modality to obtain and maintain as smooth a surface as possible, and in vitro designs do not seem to be powerful tools to draw relevant conclusions, so in vivo and in situ designs become strongly recommended.


2019 ◽  
Vol 10 (1) ◽  
pp. 173-195 ◽  
Author(s):  
Avelino Alvarez-Ordóñez ◽  
Laura M. Coughlan ◽  
Romain Briandet ◽  
Paul D. Cotter

This review examines the impact of microbial communities colonizing food processing environments in the form of biofilms on food safety and food quality. The focus is both on biofilms formed by pathogenic and spoilage microorganisms and on those formed by harmless or beneficial microbes, which are of particular relevance in the processing of fermented foods. Information is presented on intraspecies variability in biofilm formation, interspecies relationships of cooperativism or competition within biofilms, the factors influencing biofilm ecology and architecture, and how these factors may influence removal. The effect on the biofilm formation ability of particular food components and different environmental conditions that commonly prevail during food processing is discussed. Available tools for the in situ monitoring and characterization of wild microbial biofilms in food processing facilities are explored. Finally, research on novel agents or strategies for the control of biofilm formation or removal is summarized.


2020 ◽  
Author(s):  
Hervé Straub ◽  
Leo Eberl ◽  
Manfred Zinn ◽  
René M Rossi ◽  
Katharina Maniura-Weber ◽  
...  

Abstract Background Studying bacterial adhesion and early biofilm development is crucial for understanding the physiology of sessile bacteria and forms the basis for the development of novel antimicrobial biomaterials. Microfluidics technologies can be applied in such studies since they permit dynamic real-time analysis and a more precise control of relevant parameters compared to traditional static and flow chamber assays. In this work, we aimed to establish a microfluidic platform that permits real-time observation of bacterial adhesion and biofilm formation under precisely controlled homogeneous laminar flow conditions. Results Using Escherichia coli as the model bacterial strain, a microfluidic platform was developed to overcome several limitations of conventional microfluidics such as the lack of spatial control over bacterial colonization and allow label-free observation of bacterial proliferation at single-cell resolution. This platform was applied to demonstrate the influence of culture media on bacterial colonization and the consequent eradication of sessile bacteria by antibiotic. As expected, the nutrient-poor medium (modified M9 medium containing 1 g/l of organic nitrogen) was found to promote bacterial adhesion and to enable a higher adhesion rate compared to the nutrient-rich medium (tryptic soy broth containing 20 g/l of organic nitrogen). However, in rich medium the adhered cells colonized the glass surface faster than those in poor medium under otherwise identical conditions. For the first time, this effect was demonstrated to be caused by a higher retention of newly generated bacteria in the rich medium, rather than faster growth especially during the initial adhesion phase. These results also indicate that higher adhesion rate does not necessarily lead to faster biofilm formation. Antibiotic treatment of sessile bacteria with colistin was further monitored by fluorescence microscopy at single-cell resolution, allowing in situ analysis of killing efficacy of antimicrobials.Conclusion The platform established here represents a powerful and versatile tool for studying environmental effects such as medium composition on bacterial adhesion and biofilm formation. Our microfluidic setup shows great potential for the in vitro assessment of new antimicrobials and antifouling agents under flow conditions.


2020 ◽  
Author(s):  
Hervé Straub ◽  
Leo Eberl ◽  
Manfred Zinn ◽  
René M Rossi ◽  
Katharina Maniura-Weber ◽  
...  

Abstract Background Studying bacterial adhesion and early biofilm development is crucial for understanding the physiology of sessile bacteria and forms the basis for the development of novel antimicrobial biomaterials. Microfluidics technologies can be applied in such studies since they permit dynamic real-time analysis and a more precise control of relevant parameters compared to traditional static and flow chamber assays. In this work, we aimed to establish a microfluidic platform that permits real-time observation of bacterial adhesion and biofilm formation under precisely controlled homogeneous laminar flow conditions. Results Using Escherichia coli as the model bacterial strain, a microfluidic platform was developed to overcome several limitations of conventional microfluidics such as the lack of spatial control over bacterial colonization and allow label-free observation of bacterial proliferation at single-cell resolution. This platform was applied to demonstrate the influence of culture media on bacterial colonization and the consequent eradication of sessile bacteria by antibiotic. As expected, the nutrient-poor medium was found to promote bacterial adhesion and to enable a higher adhesion rate compared to the nutrient-rich medium. However, in rich medium the adhered cells colonized the glass surface faster than those in poor medium under otherwise identical conditions. For the first time, this effect was demonstrated to be caused by a higher retention of newly generated bacteria in the rich medium, rather than faster growth especially during the initial adhesion phase. These results also indicate that higher adhesion rate does not necessarily lead to faster biofilm formation. Antibiotic treatment of sessile bacteria with colistin was further monitored by fluorescence microscopy at single-cell resolution, allowing in situ analysis of killing efficacy of antimicrobials.Conclusion The platform established here represents a powerful and versatile tool for studying environmental effects such as medium composition on bacterial adhesion and biofilm formation. Our microfluidic setup shows great potential for the in vitro assessment of new antimicrobials and antifouling agents under flow conditions.


2021 ◽  
Vol 7 ◽  
Author(s):  
Christian Spengler ◽  
Erik Maikranz ◽  
Ludger Santen ◽  
Karin Jacobs

Understanding bacterial adhesion as a first step toward biofilm formation is of fundamental interests in many applications. While adhesion to abiotic surfaces is directly relevant for some applications, it also provides a controlled reference setting to study details of the adhesion process in general. This review describes the traditional approaches from contact mechanics and colloidal science, which treat the bacterium–substratum interaction in a continuous manner. We will discuss its shortcomings and provide an introduction to different approaches, which understand the adhesion process as a result of individual stochastic interactions of many macromolecules with the substratum.


Sign in / Sign up

Export Citation Format

Share Document